Publications by authors named "Shivapratap Gopakumar"

Continuous monitoring of stress in individuals during their daily activities has become an inevitable need in present times. Unattended stress is a silent killer and may lead to fatal physical and mental disorders if left unidentified. Stress identification based on individual judgement often leads to under-diagnosis and delayed treatment possibilities.

View Article and Find Full Text PDF

Objective: Our study investigates different models to forecast the total number of next-day discharges from an open ward having no real-time clinical data.

Methods: We compared 5 popular regression algorithms to model total next-day discharges: (1) autoregressive integrated moving average (ARIMA), (2) the autoregressive moving average with exogenous variables (ARMAX), (3) k-nearest neighbor regression, (4) random forest regression, and (5) support vector regression. Although the autoregressive integrated moving average model relied on past 3-month discharges, nearest neighbor forecasting used median of similar discharges in the past in estimating next-day discharge.

View Article and Find Full Text PDF

We investigate feature stability in the context of clinical prognosis derived from high-dimensional electronic medical records. To reduce variance in the selected features that are predictive, we introduce Laplacian-based regularization into a regression model. The Laplacian is derived on a feature graph that captures both the temporal and hierarchic relations between hospital events, diseases, and interventions.

View Article and Find Full Text PDF