Publications by authors named "Shivani Teli"

In this paper, for the first time, to the best of our knowledge, we experimentally demonstrate the use of a curved organic light emitting diode (OLED) as a transmitter (Tx) in the non-line-of-sight (NLOS) optical camera communication (OCC) link for an indoor environment using a camera as a receiver. The proposed NLOS-OCC scheme is evaluated for the signal-to-noise ratio (SNR) and the reception success rates under key photographic and communication parameters, including exposure times and gain values , as well as the transmission frequency and the distance . The SNR analysis is performed using a binary classification procedure based on a Gaussian mixture model for the first time, to the best of our knowledge, for OLED-based NLOS-OCC links.

View Article and Find Full Text PDF

We present a design approach for a long-distance optical camera communication (OCC) system using side-emitting fibers as distributed transmitters. We demonstrate our approach feasibility by increasing the transmission distance by two orders up to 40 m compared to previous works. Furthermore, we explore the effect of the light-emitting diode (LED) modulation frequency and rolling shutter camera exposure time on inter-symbol interference and its effective mitigation.

View Article and Find Full Text PDF

In this Letter, we propose and demonstrate a novel wireless communications link using an illuminating optical fiber as a transmitter (Tx) in optical camera communications. We demonstrate an indoor proof-of-concept system using an illuminating plastic optical fiber coupled with a light-emitting diode and a commercial camera as the Tx and the receiver, respectively. For the first time, to the best of our knowledge, we experimentally demonstrate flicker-free wireless transmission within the off-axis camera rotation angle range of 0-45° and the modulation frequencies of 300 and 500 Hz.

View Article and Find Full Text PDF

In this paper, we provide a solution based on spatial frequency to study the angular behavior of a flicker-free, short-range indoor multiple-input multiple-output (MIMO) optical camera communications (OCC) link. We focus on the experimental investigation of OCC's performance for the transmitters (Txs) [i.e.

View Article and Find Full Text PDF

In optical camera communications (OCC), the provision of both flicker-free illumination and high data rates are challenging issues, which can be addressed by utilizing the rolling-shutter (RS) property of the image sensors as the receiver (Rx). In this paper, we propose an RS-based multiple-input multiple-output OCC scheme for the Internet of things (IoT) application. A simplified design of multi-channel transmitter (Tx) using a 7.

View Article and Find Full Text PDF

In this Letter, we develop a novel technique, to the best of our knowledge, to increase the link span ($ {L_s} $L) of a rolling shutter (RS)-based optical camera communications (OCC) system by reducing the spatial bandwidth of the camera in the out-of-focus regions. We demonstrate a 400 m line-of-sight RS-based OCC link, which is to date the longest $ {L_s} $L reported in these systems, and develop a detection method to extract the information out of the video frames, successfully. The proposed system relaxes the condition of a large surface area for the transmitter light source.

View Article and Find Full Text PDF

Optical camera communications (OCC) research field has grown recently, aided by ubiquitous digital cameras; however, atmospheric conditions can restrict their feasibility in outdoor scenarios. In this work, we studied an experimental OCC system under environmental phenomena emulated in a laboratory chamber. We found that the heat-induced turbulence does not affect our system significantly, while the attenuation caused by fog does decrease the signal quality.

View Article and Find Full Text PDF

This paper investigates the performance of the neural network (NN) assisted motion detection (MD) over an indoor optical camera communication (OCC) link. The proposed study is based on the performance evaluation of various NN training algorithms, which provide efficient and reliable MD functionality along with vision, illumination, data communications and sensing in indoor OCC. To evaluate the proposed scheme, we have carried out an experimental investigation of a static indoor downlink OCC link employing a mobile phone front camera as the receiver and an 8 × 8 red, green and blue light-emitting diodes array as the transmitter.

View Article and Find Full Text PDF