Terminating a meal after achieving satiation is a critical step in maintaining a healthy energy balance. Despite the extensive collection of information over the last few decades regarding the neural mechanisms controlling overall eating, the mechanism underlying different temporal phases of eating behaviors, especially satiation, remains incompletely understood and is typically embedded in studies that measure the total amount of food intake. In this review, we summarize the neural circuits that detect and integrate satiation signals to suppress appetite, from interoceptive sensory inputs to the final motor outputs.
View Article and Find Full Text PDF17α-estradiol (17α-E2) is a naturally occurring nonfeminizing diastereomer of 17β-estradiol that has life span-extending effects in rodent models. To date, studies of the systemic and tissue-specific benefits of 17α-E2 have largely focused on the liver, brain, and white adipose tissue with far less focus on skeletal muscle. Skeletal muscle has an important role in metabolic and age-related disease.
View Article and Find Full Text PDFA healthy heart adapts to changes in nutrient availability and energy demands. In metabolic diseases like type 2 diabetes (T2D), increased reliance on fatty acids for energy production contributes to mitochondrial dysfunction and cardiomyopathy. A principal regulator of cardiac metabolism is 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2), which is a central driver of glycolysis.
View Article and Find Full Text PDFSkeletal muscle has a central role in maintaining metabolic homeostasis. 17α-estradiol (17α-E2), a naturally-occurring non-feminizing diastereomer of 17β-estradiol that demonstrates efficacy for improving metabolic outcomes in male, but not female, mice. Despite several lines of evidence showing that 17α-E2 treatment improves metabolic parameters in middle-aged obese and old male mice through effects in brain, liver, and white adipose tissue little is known about how 17α-E2 alters skeletal muscle metabolism, and what role this may play in mitigating metabolic declines.
View Article and Find Full Text PDFMetabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization.
View Article and Find Full Text PDFTo meet the increasing need for low-cost, compact imaging technology with cellular resolution, we have developed a microLED-based structured light sheet microscope for three-dimensional and imaging of biological tissue in multiple modalities. All the illumination structure is generated directly at the microLED panel-which serves as the source-so light sheet scanning and modulation is completely digital, yielding a system that is simpler and less prone to error than previously reported methods. Volumetric images with optical sectioning are thus achieved in an inexpensive, compact form factor without any moving parts.
View Article and Find Full Text PDFMetabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization.
View Article and Find Full Text PDF17α-estradiol has recently been shown to extend healthspan and lifespan in male mice through multiple mechanisms. These benefits occur in the absence of significant feminization or deleterious effects on reproductive function, which makes 17α-estradiol a candidate for translation into humans. However, human dosing paradigms for the treatment of aging and chronic disease are yet to be established.
View Article and Find Full Text PDFEstrogen signaling is protective against chronic liver diseases, although men and a subset of women are contraindicated for chronic treatment with 17β-estradiol (17β-E2) or combination hormone replacement therapies. We sought to determine if 17α-estradiol (17α-E2), a naturally occurring diastereomer of 17β-E2, could attenuate liver fibrosis. We evaluated the effects of 17α-E2 treatment on collagen synthesis and degradation rates using tracer-based labeling approaches in male mice subjected to carbon tetrachloride (CCl)-induced liver fibrosis.
View Article and Find Full Text PDFObjective: Nuclear receptor Peroxisome Proliferator-Activated Receptor γ (PPARγ) is a promising target for the treatment of type 2 diabetes. The antidiabetic drug thiazolidinediones (TZDs) are potent insulin sensitizers as full agonists of PPARγ, but cause unwanted side effects. Recent discoveries have shown that TZDs improve insulin sensitivity by blocking PPARγ phosphorylation at S273, which decouples the full agonism-associated side effects.
View Article and Find Full Text PDFNutritional manipulations early in life have been shown to influence growth rate and elicit long lasting effects which in turn has been found to impact lifespan. Therefore, we studied the long-term effects of pre-weaning dietary restriction implemented by litter expansion (4, 6, 8, 10, and 12 pups per dam: LS4, LS6, LS8, LS10, LS12) on male and female C57BL/6J mice. After weaning, these mice were fed ad libitum a commercial lab chow for the 15-month duration of the study.
View Article and Find Full Text PDFMetabolic dysfunction underlies several chronic diseases, many of which are exacerbated by obesity. Dietary interventions can reverse metabolic declines and slow aging, although compliance issues remain paramount. 17α-estradiol treatment improves metabolic parameters and slows aging in male mice.
View Article and Find Full Text PDFMenopause is a natural physiological process in older women that is associated with reduced estrogen production and results in increased risk for obesity, diabetes, and osteoporosis. 17α-estradiol (17α-E2) treatment in males, but not females, reverses several metabolic conditions associated with advancing age, highlighting sexually dimorphic actions on age-related pathologies. In this study we sought to determine if 17α-E2 could prevent ovariectomy (OVX)-mediated detriments on adiposity and bone parameters in females.
View Article and Find Full Text PDFAMPA-type glutamate receptors (AMPAR) are one of the principal mediators of fast excitatory synaptic transmission in the brain. These receptors associate with multiple integral membrane proteins which influence their trafficking and channel properties. Proline-rich transmembrane protein 1 (PRRT1) is a membrane protein and an understudied component of native AMPAR complexes.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
April 2020
17α-Estradiol (17α-E2) is a "non-feminizing" estrogen that extends life span in male, but not female, mice. We recently reported that 17α-E2 had robust beneficial effects on metabolic and inflammatory parameters in aged male mice. However, it remains unclear if 17α-E2 also delays other "hallmarks" of aging, particularly maintaining proteostasis.
View Article and Find Full Text PDFSphingolipids are essential to cell membrane structure and the development and maintenance of neural tissues. The role of bioactive sphingolipids has been established in numerous cellular events, including cell survival, growth, and apoptosis. Ocular inflammatory and autoimmune diseases involve activation and migration of endothelial cells, neovascularization, and infiltration of immune cells into various tissues.
View Article and Find Full Text PDFBotanical compounds have been widely used throughout history as cures for various diseases and ailments. Many of these compounds exhibit strong antioxidative, anti-inflammatory, and antiapoptotic properties. These are also common damaging mechanisms apparent in several ocular diseases, including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy, cataract, and retinitis pigmentosa.
View Article and Find Full Text PDF