Recognition of "non-self" nucleic acids, including cytoplasmic dsDNA, dsRNA, or mRNAs lacking proper 5' cap structures, is critical for the innate immune response to viruses. Here, we demonstrate that short 5' untranslated regions (UTRs), a characteristic of many viral mRNAs, can also serve as a molecular pattern for innate immune recognition via the interferon-induced proteins IFIT2 and IFIT3. The IFIT2-IFIT3 heterodimer, formed through an intricate domain swap structure resolved by cryo-EM, mediates viral mRNA 5' end recognition, translation inhibition, and ultimately antiviral activity.
View Article and Find Full Text PDFAlkaline exonucleases (AE) are present in several large DNA viruses including bacteriophage λ and herpesviruses, where they play roles in viral DNA processing during genome replication. Given the genetic conservation of AEs across viruses infecting different kingdoms of life, these enzymes likely assume central roles in the lifecycles of viruses where they have yet to be well characterized. Here, we applied a structure-guided functional analysis of the bifunctional AE in the oncogenic human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), called SOX.
View Article and Find Full Text PDF