The debilitating effects of Parkinson's disease (PD) progress over time and are pathophysiologically characterized by the formation of Lewy bodies due to the accumulation of α-synuclein aggregates resulting in the death of dopaminergic neurons. In the present study, we determined cell death pathways activated by acute exposure to 6-hydroxydopamine (6-OHDA) in differentiated LUHMES cells empirically followed by a 24 h toxin free interval, henceforth termed as washout/recovery period. Acute 6-OHDA exposure led to morphological changes in LUHMES cells and resulted in significant loss of neurite length and neurite thickness.
View Article and Find Full Text PDFBackground: Maternal exposure to environmental stressors poses a risk to fetal development. Oxidative stress (OS), microglia activation, and inflammation are three tightly linked mechanisms that emerge as a causal factor of neurodevelopmental anomalies associated with prenatal ethanol exposure. Antioxidants such as glutathione (GSH) and CuZnSOD are perturbed, and their manipulation provides evidence for neuroprotection.
View Article and Find Full Text PDFThe present study discusses the design, development and characterization of electrospun Tecoflex EG 80A class of polyurethane nanofibers and the incorporation of multiwalled carbon nanotubes (MWCNTs) to these materials. Scanning electron microscopy results confirmed the presence of polymer nanofibers, which showed a decrease in fiber diameter at 0.5% wt.
View Article and Find Full Text PDFTimely removal of oxidatively damaged proteins is critical for cells exposed to oxidative stresses; however, cellular mechanism for clearing oxidized proteins is not clear. Our study reveals a novel type of protein modification that may play a role in targeting oxidized proteins and remove them. In this process, DSS1 (deleted in split hand/split foot 1), an evolutionally conserved small protein, is conjugated to proteins induced by oxidative stresses in vitro and in vivo, implying oxidized proteins are DSS1 clients.
View Article and Find Full Text PDFBackground: Metabolic syndrome (MetS) is a constellation of factors including abdominal obesity, hyperglycemia, dyslipidemias, and hypertension that increase morbidity and mortality from diabetes and cardiovascular diseases and affects more than a third of the population in the US. Clozapine, an atypical antipsychotic used for the treatment of schizophrenia, has been found to cause drug-induced metabolic syndrome (DIMS) and may be a useful tool for studying cellular and molecular changes associated with MetS and DIMS. Mitochondria dysfunction, oxidative stress and inflammation are mechanisms proposed for the development of clozapine-related DIMS.
View Article and Find Full Text PDFInhibition of proteasome activity and the resulting protein accumulation are now known to be important events in the development of many neurological disorders, including Alzheimer's and Parkinson's diseases. Abnormal or over expressed proteins cause endoplasmic reticulum and oxidative stress leading to cell death, thus, normal proteasome function is critical for their removal. We have shown previously, with cultured SH-SY5Y neuroblastoma cells, that proteasome inhibition by the drug epoxomicin results in accumulation of ubiquitinated proteins.
View Article and Find Full Text PDFCullin-RING E3 ligases (CRLs) are a class of ubiquitin ligases that control the proteasomal degradation of numerous target proteins, including IκB, and the activity of these CRLs are positively regulated by conjugation of a Nedd8 polypeptide onto Cullin proteins in a process called neddylation. CRL-mediated degradation of IκB, which normally interacts with and retains NF-κB in the cytoplasm, permits nuclear translocation and transactivation of the NF-κB transcription factor. Neddylation occurs through a multistep enzymatic process involving Nedd8 activating enzymes, and recent studies have shown that the pharmacological agent, MLN4924, can potently inhibit Nedd8 activating enzymes, thereby preventing neddylation of Cullin proteins and preventing the degradation of CRL target proteins.
View Article and Find Full Text PDFThe proteasome is an enzyme complex responsible for targeted intracellular proteolysis. Alterations in proteasome-mediated protein clearance have been implicated in the pathogenesis of aging, Alzheimer's disease (AD) and Parkinson's disease (PD). In such diseases, proteasome inhibition may contribute to formation of abnormal protein aggregates, which in turn activate intracellular unfolded protein responses that cause oxidative stress and apoptosis.
View Article and Find Full Text PDFEthanol ingestion during pregnancy elicits damage to the developing brain, some of which appears to result from enhanced apoptotic death of neurons. A consistent characteristic of this phenomenon is a highly differing sensitivity to ethanol within specific neuron populations. One possible explanation for this "selective vulnerability" could be cellular variations in glutathione (GSH) homeostasis.
View Article and Find Full Text PDFRecent studies have invoked inflammation as a major contributor to the pathogenesis of Parkinson's disease (PD). We determined the role of members of the chemokine system, key inflammatory mediators, in PD pathogenesis. In the MPTP model of murine PD, several chemokines, including CC chemokine ligand 2 (CCL2, Monocyte Chemoattractant Protein-1) and CCL3 (Macrophage Inflammatory Protein-1alpha), were upregulated in the striatum and the ventral midbrain.
View Article and Find Full Text PDFIn utero ethanol exposure elicits apoptotic cell death in the fetal brain, and this may be mediated by oxidative stress. Our studies utilize cultured fetal rat cortical neurons and illustrate that ethanol elicits a rapid onset of oxidative stress, which culminates in mitochondrially mediated apoptotic cell death. Cells exposed to ethanol (2.
View Article and Find Full Text PDF