Stability in recurrent neural models poses a significant challenge, particularly in developing biologically plausible neurodynamical models that can be seamlessly trained. Traditional cortical circuit models are notoriously difficult to train due to expansive nonlinearities in the dynamical system, leading to an optimization problem with nonlinear stability constraints that are difficult to impose. Conversely, recurrent neural networks (RNNs) excel in tasks involving sequential data but lack biological plausibility and interpretability.
View Article and Find Full Text PDFStochasticity plays a central role in nearly every biological process, and the noise power spectral density (PSD) is a critical tool for understanding variability and information processing in living systems. In steady-state, many such processes can be described by stochastic linear time-invariant (LTI) systems driven by Gaussian white noise, whose PSD is a complex rational function of the frequency that can be concisely expressed in terms of their Jacobian, dispersion, and diffusion matrices, fully defining the statistical properties of the system's dynamics at steady-state. Here, we arrive at compact element-wise solutions of the rational function coefficients for the auto- and cross-spectrum that enable the explicit analytical computation of the PSD in dimensions n=2,3,4.
View Article and Find Full Text PDF