Ophthalmic Physiol Opt
March 2024
Introduction: Despite the well-known reproducibility issues of subjective refraction, most studies evaluating autorefractors compared differences between the device and subjective refraction. This work evaluated the performance of a novel handheld Hartmann-Shack-based autorefractor using an alternative protocol, which considered the inherent variability of subjective refraction.
Methods: Participants underwent an initial measurement with a desktop autorefractor, two subjective refractions (SR1 and SR2) and a final measurement with the QuickSee Free (QSFree) portable autorefractor.
Purpose: To assess the performance of machine learning (ML) ensemble models for predicting patient subjective refraction (SR) using demographic factors, wavefront aberrometry data, and measurement quality related metrics taken with a low-cost portable autorefractor.
Methods: Four ensemble models were evaluated for predicting individual power vectors (M, J, and J) corresponding to the eyeglass prescription of each patient. Those models were random forest regressor (RF), gradient boosting regressor (GB), extreme gradient boosting regressor (XGB), and a custom assembly model (ASB) that averages the first three models.
The aim of this work is to evaluate the performance of a novel algorithm that combines dynamic wavefront aberrometry data and descriptors of the retinal image quality from objective autorefractor measurements to predict subjective refraction. We conducted a retrospective study of the prediction accuracy and precision of the novel algorithm compared to standard search-based retinal image quality optimization algorithms. Dynamic measurements from 34 adult patients were taken with a handheld wavefront autorefractor and static data was obtained with a high-end desktop wavefront aberrometer.
View Article and Find Full Text PDFPurpose: To compare patient preferences for eyeglasses prescribed using a low-cost, portable wavefront autorefractor versus standard subjective refraction (SR).
Design: Randomized, cross-over clinical trial.
Participants: Patients aged 18 to 40 years presenting with refractive errors (REs) to a tertiary eye hospital in Southern India.
Purpose: To assess the performance of an open-view binocular handheld aberrometer (QuickSee) for diagnosing refractive errors in children.
Methods: 123 school-age children (9.9 ± 3.
Significance: There is a critical need for tools that increase the accessibility of eye care to address the most common cause of vision impairment: uncorrected refractive errors. This work assesses the performance of an affordable autorefractor, which could help reduce the burden of this health care problem in low-resource communities.
Purpose: The purpose of this study was to validate the commercial version of a portable wavefront autorefractor for measuring refractive errors.
Fluorescent cytometry refers to the quantification of cell physical properties and surface biomarkers using fluorescently-tagged antibodies. The generally preferred techniques to perform such measurements are flow cytometry, which performs rapid single cell analysis by flowing cells one-by-one through a channel, and microscopy, which eliminates the complexity of the flow channel, offering multi-cell analysis at a lesser throughput. Low-magnification image-based cytometers, also called "cell astronomy" systems, hold promise of simultaneously achieving both instrumental simplicity and high throughput.
View Article and Find Full Text PDFObjective: To assess the quality of eyeglass prescriptions provided by an affordable wavefront autorefractor operated by a minimally trained technician in a low-resource setting.
Methods And Analysis: 708 participants were recruited from consecutive patients registered for routine eye examinations at Aravind Eye Hospital in Madurai, India, or an affiliated rural satellite vision centre. Visual acuity (VA) and patient preference were compared between trial lenses set to two eyeglass prescriptions from (1) a novel wavefront autorefractor and (2) subjective refraction by an experienced refractionist.
Surface engineering advances of semiconductor quantum dots (QDs) have enabled their application to molecular labeling, disease diagnostics and tumor imaging. For biological applications, hydrophobic core/shell QDs are transferred into aqueous solutions through the incorporation of water-solubility imparting moieties, typically achieved via direct exchange of the native surface passivating ligands or indirectly through the adsorption of polymers. Although polymeric encapsulation has gained wide acceptance, there are few reports addressing the characterization of the adsorbed polymers and existing theoretical analyses are typically based on simple geometric models.
View Article and Find Full Text PDFPurpose: To introduce a novel autorefractor design that is intended to be manufacturable at low cost and evaluate its performance in measuring refractive errors.
Methods: We developed a handheld, open-view autorefractor (the "QuickSee" [QS]) that uses a simplified approach to wavefront sensing that forgoes moving parts and expensive components. Adult subjects (n = 41) were recruited to undergo noncycloplegic refraction with three methods: (1) a QS prototype, (2) a Grand Seiko WR-5100K (GS) autorefractor, and (3) subjective refraction (SR).
Part Part Syst Charact
December 2014
Fluorescent semiconductor nanoparticles, or quantum dots, have become a promising platform for the engineering of biofunctional probes for a variety of biomedical applications, ranging from multicolor imaging to single-molecule tracking to traceable drug delivery. Advances in organometallic synthesis have enabled preparation of hydrophobic quantum dots with high quantum yields and narrow size distribution, offering bright optical materials with narrow size-tunable emission profiles. At the same time, polymer encapsulation procedures provided a simple and versatile methodology for transferring hydrophobic nanoparticles into physiologically-relevant aqueous buffers.
View Article and Find Full Text PDFPurpose: Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors.
View Article and Find Full Text PDFRecent developments in nanotechnology have made available a host of new approaches for the improved quantitative detection of biomarkers due to the enhanced sensitivity of nanoparticle-based assays. The majority of molecular toxicology studies revolve around sensitive measurement of cell-death (apoptosis) and cell-health biomarkers present in living cells or formalin-fixed and paraffin embedded (FFPE) tissue samples. In this regard, semi-conductor quantum dots (QDs) which exhibit high brightness, photo-stability and degree of multiplexing, are predicted to have a significant impact on research in molecular toxicology.
View Article and Find Full Text PDFIn the biological sciences, the use of core-shell quantum dots (QDs) has gained wide usage but analytical challenges still exist for characterizing the QD structure. The application of energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy (XPS) to bulk materials is relatively straightforward; however, for meaningful applications of surface science techniques to multilayer nanoparticles requires novel modifications and analysis methods. To experimentally characterize the elemental composition and distribution in CdSe/CdS/ZnS QDs, we first develop a XPS signal subtraction technique capable of separating the overlapped selenium 3s (core) and sulfur 2s (shell) peaks (both peaks have binding energies near 230 eV) with higher precision than is typically reported in the nanoparticle literature.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
March 2010
Advances in nanotechnology have pushed forward the synthesis of a variety of functional nanoparticles (NPs) such as semiconductor quantum dots (QDs), magnetic and metallic NPs. The unique electronic, magnetic, and optical properties exhibited by these nanometer-sized materials have enabled a broad spectrum of biomedical applications. In particular, iron-oxide-based magnetic NPs have proved to be highly versatile deep-tissue imaging agents, having been incorporated into clinical applications due to their biocompatibility.
View Article and Find Full Text PDFMultiplexed nanobarcodes have been prepared with quantum dots (QDs) and alternating amphiphilic copolymers consisting of hydrocarbons and maleic anhydride groups. In homogeneous solution, the QD-polymer complexes grow epitaxially into nanobeads of narrow size dispersity, which has been previously achieved only for micrometer-sized beads in the presence of solid supports. As a result of this new nanostructure formation mechanism, more than 250 QDs can be loaded into a nanobead of 100 nm in diameter.
View Article and Find Full Text PDFRecent advances in nanotechnology have produced a variety of nanoparticles ranging from semiconductor quantum dots (QDs), magnetic nanoparticles (MNPs), metallic nanoparticles, to polymeric nanoparticles. Their unique electronic, magnetic, and optical properties have enabled a broad spectrum of biomedical applications such as ultrasensitive detection, medical imaging, and specific therapeutics. MNPs made from iron oxide, in particular, have attracted extensive interest and have already been used in clinical studies owing to their capability of deep-tissue imaging, non-immunogenesis, and low toxicity.
View Article and Find Full Text PDFQuantum dots (QDs), tiny light-emitting particles on the nanometer scale, are emerging as a new class of fluorescent probes for biomolecular and cellular imaging. In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. These properties are most promising for improving the sensitivity of molecular imaging and quantitative cellular analysis by 1-2 orders of magnitude.
View Article and Find Full Text PDFIn the pursuit of sensitive and quantitative methods to detect and diagnose cancer, nanotechnology has been identified as a field of great promise. Semiconductor quantum dots are nanoparticles with intense, stable fluorescence, and could enable the detection of tens to hundreds of cancer biomarkers in blood assays, on cancer tissue biopsies, or as contrast agents for medical imaging. With the emergence of gene and protein profiling and microarray technology, high-throughput screening of biomarkers has generated databases of genomic and expression data for certain cancer types, and has identified new cancer-specific markers.
View Article and Find Full Text PDF