Phase behavior of nanoconfined fluids adsorbed in metal-organic frameworks is of paramount importance for the design of advanced materials for energy and gas storage, separations, electrochemical devices, sensors, and drug delivery, as well as for the pore structure characterization. Phase transformations in adsorbed fluids often involve long-lasting metastable states and hysteresis that has been well-documented in gas adsorption-desorption and nonwetting fluid intrusion-extrusion experiments. However, theoretical prediction of the observed nanophase behavior remains a challenging problem.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are nanoporous crystals which are widely used as selective adsorbents, separation membranes, catalysts, gas and energy storage media, and drug delivery vehicles. The unique adsorption and transport properties of MOFs are determined by their complex three-dimensional (3D) networks of pores, cages, and channels that differ in size, shape, and chemical composition. While the morphological structure of MOF crystals is known, practical MOF materials are rarely ideal crystals.
View Article and Find Full Text PDFAs shown by a quite significant amount of literature, acids at the water surface tend to be "less" acid, meaning that their associated form is favored over the conjugated base. What happens at the solid/liquid interface? In the case of the silica/water interface, we show how the acidity of adsorbed molecules can instead increase. Using a free energy perturbation approach in combination with electronic structure-based molecular dynamics simulations, we show how the acidity of pyruvic acid at the quartz/water interface is increased by almost two units.
View Article and Find Full Text PDF