Publications by authors named "Shivam K Purohit"

Mucosal-associated invariant T (MAIT) cells are unconventional T cells that respond to riboflavin biosynthesis and cytokines through TCR-dependent and -independent pathways, respectively. MAIT cell activation plays an immunoprotective role against several pathogens, however the functional capacity of MAIT cells following direct infection or exposure to infectious agents remains poorly defined. We investigated the impact of Varicella Zoster Virus (VZV) on blood-derived MAIT cells and report virus-mediated impairment of activation, cytokine production, and altered transcription factor expression by VZV infected (antigen+) and VZV exposed (antigen-) MAIT cells in response to TCR-dependent and -independent stimulation.

View Article and Find Full Text PDF

Natural killer (NK) cells are cytotoxic lymphocytes important for viral defense. West Nile virus (WNV) infection of the central nervous system (CNS) causes marked recruitment of bone marrow (BM)-derived monocytes, T cells and NK cells, resulting in severe neuroinflammation and brain damage. Despite substantial numbers of NK cells in the CNS, their function and phenotype remain largely unexplored.

View Article and Find Full Text PDF

Introduction: Mucosal Associated Invariant T (MAIT) cells are innate-like T cells that respond to conserved pathogen-derived vitamin B metabolites presented by the MHC class I related-1 molecule (MR1) antigen presentation pathway. Whilst viruses do not synthesize these metabolites, we have reported that varicella zoster virus (VZV) profoundly suppresses MR1 expression, implicating this virus in manipulation of the MR1:MAIT cell axis. During primary infection, the lymphotropism of VZV is likely to be instrumental in hematogenous dissemination of virus to gain access to cutaneous sites where it clinically manifests as varicella (chickenpox).

View Article and Find Full Text PDF

The antigen presentation molecule MR1 (major histocompatibility complex, class I-related) presents ligands derived from the riboflavin (vitamin B) synthesis pathway, which is not present in mammalian species or viruses, to mucosal-associated invariant T (MAIT) cells. In this study, we demonstrate that varicella zoster virus (VZV) profoundly suppresses MR1 expression. We show that VZV targets the intracellular reservoir of immature MR1 for degradation, while preexisting, ligand-bound cell surface MR1 is protected from such targeting, thereby highlighting an intricate temporal relationship between infection and ligand availability.

View Article and Find Full Text PDF

Mucosal-associated invariant T (MAIT) cells are abundant innate-like T cells important in antimicrobial immunity. These cells express a semi-invariant T cell receptor that recognizes the Major Histocompatibility Complex (MHC) class I-related protein 1 (MR1) in complex with small metabolite antigens derived from a range of commensal and pathogenic bacteria and yeasts, but not other pathogens such as viruses. Thus, MR1 stimulation of MAIT cells was thought to act as a sensor of bacterial infection and was not directly involved in anti-viral immunity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongpmejur1beliolach3gdrp2uo7m6n0t2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once