Publications by authors named "Shivaji Sharma"

Esophageal cancer is the sixth most common cancer in India with a incidence of around 4.5%. Dysphagia is the primary manifestation of advanced esophageal cancer in 80%-90% of patients.

View Article and Find Full Text PDF

The aim of this study is to compare laparoscopic and conventional techniques following Total Pharyngo-laryngo-esophagectomy (TPLE) with respect to perioperative morbidity and mortality and postoperative recovery in post cricoid cancer patients. This is a prospective study, which was undertaken in Gujrat Cancer Research Institute (GCRI) in the period of July 2007 to March 2010. Fifteen consecutive patients who underwent laparoscopic TPLE were compared to that of 18 consecutive patients who underwent open TPLE.

View Article and Find Full Text PDF

Amphipols (APols) are amphipathic polymers with the ability to substitute detergents to keep membrane proteins (MPs) soluble and functional in aqueous solutions. APols also protect MPs against denaturation. Here, we have examined the ability of APol-trapped MPs to be analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).

View Article and Find Full Text PDF

Biotinylated amphipol was used to entrap FhuA (an E. coli outer membrane protein) and immobilize the FhuA-amphipol complex on streptavidin surfaces. Using this assembly, we have successfully devised surface-based assays for studying the recognition of FhuA by pb5 (a bacteriophage T5 protein) and determination of the affinity constant.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Recent studies show that some GPCRs signal through both G protein and arrestin pathways in a ligand-specific manner. Ligands that direct signaling through a specific pathway are known as biased ligands.

View Article and Find Full Text PDF

Nonionic amphipols (NAPols) synthesized by homotelomerization of an amphiphatic monomer are able to keep membrane proteins (MPs) stable and functional in the absence of detergent. Some of their biochemical and biophysical properties and applications have been examined, with particular attention being paid to their complementarity with the classical polyacrylate-based amphipol A8-35. Bacteriorhodopsin (BR) from Halobacterium salinarum and the cytochrome b(6)f complex from Chlamydomonas reinhardtii were found to be in their native state and highly stable following complexation with NAPols.

View Article and Find Full Text PDF

A novel type of nonionic amphipols for handling membrane proteins in detergent-free aqueous solutions has been obtained through free-radical homo-telomerization of an acrylamide-based monomer comprising a C(11) alkyl chain and two glucose moieties, using a thiol as transfer reagent. By controlling the thiol/monomer ratio, the number-average molecular weight of the polymers was varied from 8 to 63 kDa. Homopolymeric nonionic amphipols were found to be highly soluble in water and to self-organize, within a large concentration range, into small, compact particles of ~6 nm diameter with a narrow size distribution, regardless of the molecular weight of the polymer.

View Article and Find Full Text PDF

Solubilizing membrane proteins for functional, structural and thermodynamic studies is usually achieved with the help of detergents, which, however, tend to destabilize them. Several classes of non-detergent surfactants have been designed as milder substitutes for detergents, most prominently amphipathic polymers called 'amphipols' and fluorinated surfactants. Here we test the potential usefulness of these compounds for thermodynamic studies by examining their effect on conformational transitions of the diphtheria toxin T-domain.

View Article and Find Full Text PDF

Amphipols (APols) are short amphipathic polymers designed to adsorb onto the transmembrane surface of membrane proteins, keeping them water-soluble in the absence of detergent. Current APols carry charged groups, which is a limitation for certain types of applications. This has prompted the development of totally nonionic amphiphols (NAPols).

View Article and Find Full Text PDF

A novel class of nonionic amphipols (NAPols) designed to handle membrane proteins in aqueous solutions has been synthesized, and its solution properties have been examined. These were synthesized through free radical cotelomerization of glucose-based hydrophilic and amphiphilic monomers derived from tris(hydroxymethyl)acrylamidomethane using azobisisobutyronitrile as the initiator and thiol as the transfer agent. The molecular weight and the hydrophilic/lipophilic balance of the cotelomers were modulated by varying the thiol/monomers and the hydrophilic monomer/amphiphilic monomer ratios, respectively, and were characterized by 'H NMR, UV, gel permeation chromatography, and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

The interaction between the alkanediyl-alpha,omega-type cationic gemini surfactant, [(C(16)H(33)N(+)(CH(3))(2)(CH(2))(4)N(+)(CH(3))(2)C(16)H(33))2Br(-)], 16-4-16 and the conventional nonionic surfactant [CH(3)(CH(2))(10)CH(2)(OCH(2)CH(2))(6)OH], C(12)E(6) in aqueous medium has been investigated. The critical micelle concentrations of different mixtures have been measured by surface tension using a du Nouy tensiometer in aqueous solution at different temperatures (303, 308, and 313 K). Maximum surface excess (Gamma(max)) and minimum area per molecule (A(min)) were evaluated from a surface tension vs log(10)C (C is concentration) plot.

View Article and Find Full Text PDF