Publications by authors named "Shivaji A Thadke"

Gamma peptide nucleic acids (PNAs) are a promising class of nucleic acid mimics that adopt either a right- or left-handed helical motif as individual strands and hybridize to DNA or RNA with high affinity and sequence specificity, or not at all, depending on the helical sense. They are attractive as antisense and antigene reagents, as well as building blocks for molecular self-assembly; however, they have not been widely adopted due to their relatively poor biophysical attributes and the challenge in chemical modifications. Here, we report the development of a set of universal monomers, four each for both the right- and left-handed conformers, that permit rapid and selective on-resin chemical functionalization and diversification.

View Article and Find Full Text PDF

Peptide nucleic acids (PNAs) have primarily been used to achieve therapeutic gene modulation through antisense strategies since their design in the 1990s. However, the application of PNAs as a functional nanomaterial has been more recent. We recently reported that γ-modified peptide nucleic acids (γPNAs) could be used to enable formation of complex, self-assembling nanofibers in select polar aprotic organic solvent mixtures.

View Article and Find Full Text PDF

A robust synthetic route has been developed for preparing optically pure, Fmoc-protected diethylene glycol-containing ( R)- and ( S)-γPNA monomers. The strategy involves the application of 9-(4-bromophenyl)-9-fluorenyl as a temporary, safety-catch protecting group for the suppression of epimerization in the O-alkylation and reductive amination steps. The optical purities of the final monomers were determined to be greater than 99.

View Article and Find Full Text PDF

We report the development of a new class of nucleic acid ligands that is comprised of Janus bases and the MPγPNA backbone and is capable of binding rCAG repeats in a sequence-specific and selective manner via, inference, bivalent H-bonding interactions. Individually, the interactions between ligands and RNA are weak and transient. However, upon the installation of a C-terminal thioester and an N-terminal cystine and the reduction of disulfide bond, they undergo template-directed native chemical ligation to form concatenated oligomeric products that bind tightly to the RNA template.

View Article and Find Full Text PDF

Toxic RNAs containing expanded trinucleotide repeats are the cause of many neuromuscular disorders, one being myotonic dystrophy type 1 (DM1). DM1 is triggered by CTG-repeat expansion in the 3'-untranslated region of the DMPK gene, resulting in a toxic gain of RNA function through sequestration of MBNL1 protein, among others. Herein, we report the development of a relatively short miniPEG-γ peptide nucleic acid probe, two triplet repeats in length, containing terminal pyrene moieties, that is capable of binding rCUG repeats in a sequence-specific and selective manner.

View Article and Find Full Text PDF

Template-directed synthesis offers several distinct benefits over conventional laboratory creation, including unsurpassed reaction rate and selectivity. Although it is central to many biological processes, such an approach has rarely been applied to the in situ synthesis and recognition of biomedically relevant target. Towards this goal, we report the development of a three-codon nucleic-acid probe containing a C-terminal thioester group and an N-terminal cysteine that is capable of undergoing template-directed oligomerization in the presence of an RNA target and self-deactivation in its absence.

View Article and Find Full Text PDF

An impressive array of antigene approaches has been developed for recognition of double helical DNA over the past three decades; however, few have exploited the 'Watson-Crick' base-pairing rules for establishing sequence-specific recognition. One approach employs peptide nucleic acid as a molecular reagent and strand invasion as a binding mode. However, even with integration of the latest conformationally-preorganized backbone design, such an approach is generally confined to sub-physiological conditions due to the lack of binding energy.

View Article and Find Full Text PDF

Emergence of multidrug-resistant and extreme-drug-resistant strains of Mycobacterium tuberculosis (MTb) can cause serious socioeconomic burdens. Arabinogalactan present on the cellular envelope of MTb is unique and is required for its survival; access to arabinogalactan is essential for understanding the biosynthetic machinery that assembles it. Isolation from Nature is a herculean task and, as a result, chemical synthesis is the most sought after technique.

View Article and Find Full Text PDF

The O-glycosidation of hydroxysuccinimides and hydroxyphthalimides with a variety of aldose derived propargyl 1,2-orthoesters under the gold(III)-catalyzed glycosidation conditions is reported. A wide range of hydroxysuccinimidyl and hydroxyphthalimidyl glycosides were synthesized from corresponding glycosyl orthoesters including glucosyl, mannosyl, galactosyl, ribofuranosyl, arabinofuranosyl, lyxofuranosyl and xylofuranosyl using gold catalysis repertoire. The protocol is identified to be compatible for the synthesis of aminooxy glycosides of higher oligosaccharides as well.

View Article and Find Full Text PDF

Complex oligosaccharide syntheses employ the use of more than one glycosyl donor and hence, methods for the interconversion of glycosyl donors are highly valuable for the overall synthesis plan. Herein, n-pentenyl glycosides are efficiently converted to glycosyl 1,2-O-orthoesters in the presence of both acid and base sensitive functional groups. The identified protocol was found to be suitable for the synthesis of trisaccharyl and tetrasaccharyl 1,2-O-orthoester as well.

View Article and Find Full Text PDF

Stereoselective synthesis of furanosides is still a daunting task, unlike the pyranosides, for which several methods exist. Herein, a unified stereoselective strategy for the synthesis of 1,2-trans and 1,2-cis furanosides is revealed for seven out of eight possible isomers of pentoses. The identified protocol gives access to diastereoselective synthesis of α- and β-araf, ribf, lyxf, and α-xylf furanosides.

View Article and Find Full Text PDF

Propargyl 1,2-orthoesters of arabinose are exploited for the synthesis of 1,2-trans furanosides; easily accessible 1,2-trans ribofuranosides are converted to challenging 1,2-cis-arabinofuranosides by oxidoreduction. Utility of these protocols was demonstrated by the successful synthesis of major structural motifs present in the cell surface of Mycobacterium tuberculosis. Key furanosylations were carried out under gold-catalyzed glycosidation conditions.

View Article and Find Full Text PDF

Propargyl glyco 1,2-orthoesters were exploited for the efficient synthesis of interesting glycomonomers such as glyco-acrylates and acrylamides using gold catalysts. It was observed that propargyl glyco 1,2-orthoesters with hydroxyethyl acrylates gives very good yield of the corresponding glyco-acrylates in a single step in the presence of catalytic amount of gold(III) catalyst; whereas, gold catalyzed glycosidation reaction on hydroxyethyl acrylamides was found to yield the corresponding acrylamidoyl 1,2-orthoester which was then converted to the corresponding glycol-acrylamide in the presence of catalytic amount of TMSOTf. Synthesized glyco-acrylate/acrylamide monomers are shown to undergo thiolate addition as well as free radical polymerization.

View Article and Find Full Text PDF

An orthogonal activation strategy with propargyl and n-pentenyl glycosides has been identified. According to this methodology, n-pentenyl glycosides can be selectively activated with NIS/TMSOTf in the presence of either armed or disarmed propargyl O-glycosides. In addition, we report herein that propargyl 1,2-orthoesters can be selectively activated with AuBr(3) in CH(2)Cl(2) at room temperature in the presence of n-pentenyl glycosides.

View Article and Find Full Text PDF