We fabricate and characterize waveguides composed of closely spaced and longitudinally oriented silicon ridges etched into silicon-on-insulator wafers. Through both guided mode and bulk measurements, we demonstrate that the patterning of silicon waveguides on such a deeply subwavelength scale is desirable for nonlinear and sensing applications alike. The proposed waveguide geometry simultaneously exhibits comparable propagation losses to similar schemes proposed in literature, an enhanced effective third-order nonlinear susceptibility, and high sensitivity to perturbations in its environment.
View Article and Find Full Text PDFMulti-photon microscopy operating at 1550 nm is employed as a rapid characterization tool for studying the photostability of three well-known electro-optical materials. Different nonlinear optical responses such as multi-photon excitation fluoresence, second-, and third-harmonic generation can be used as detection probes to reveal the degradation mechanisms. This technique is rapid, accurate, and can be used to study the photostability of a broad range of materials.
View Article and Find Full Text PDF