Flocking behavior is observed in biological systems from the cellular to superorganismal length scales, and the mechanisms and purposes of this behavior are objects of intense interest. In this paper, we study the collective dynamics of bovine sperm cells in a viscoelastic fluid. These cells appear not to spontaneously flock, but transition into a long-lived flocking phase after being exposed to a transient ordering pulse of fluid flow.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2022
Collective swimming is evident in the sperm of several mammalian species. In bull () sperm, high viscoelasticity of the surrounding fluid induces the sperm to form dynamic clusters. Sperm within the clusters swim closely together and align in the same direction, yet the clusters are dynamic because individual sperm swim into and out of them over time.
View Article and Find Full Text PDFObstructed by hurdles in information extraction, handling and processing, computer-assisted sperm analysis systems have typically not considered in detail the complex flagellar waveforms of spermatozoa, despite their defining role in cell motility. Recent developments in imaging techniques and data processing have produced significantly improved methods of waveform digitization. Here, we use these improvements to demonstrate that near-complete flagellar capture is realizable on the scale of hundreds of cells, and, further, that meaningful statistical comparisons of flagellar waveforms may be readily performed with widely available tools.
View Article and Find Full Text PDF