Resveratrol (3, 5, 4'-trihydroxystilbene) is a polyphenolic derivative with herbal origin. It has attracted considerable attention in recent decades. Many studies have revealed the benefits of Resveratrol over several human disease models, including heart and neurological diseases, nephroprotective, immune regulation, antidiabetic, anti-obesity, age-related diseases, antiviral, and anticancer in experimental and clinical conditions.
View Article and Find Full Text PDFIntroduction: Allogeneic hematopoietic stem cell transplantation (HSCT) is the only definitive curative option for β-major thalassemia patients (β-MT). Posterior reversible encephalopathy syndrome (PRES) is a pervasive neurological complication which typically occurs following HSCT. β-MT patients are prone to a higher PRES incidence due to long-term immunosuppression; thus, it is imperative that these patients are closely monitored for PRES after HSCT.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) have a pivotal role in Hepatitis B Virus (HBV) infection and its complications by targeting the cellular transcription factors required for gene expression or directly binding to HBV transcripts. Single Nucleotide Polymorphisms (SNPs) in miRNA genes affect their expression and the regulation of target genes, clinical course, diagnosis, and therapeutic interventions of HBV infection.
Methods: Computational assessment and cataloging of miRNA gene polymorphisms targeting mRNA transcripts straightly or indirectly through the regulation of hepatitis B infection by annotating the functional impact of SNPs on mRNA-miRNA and miRNA-RBS (miRNA binding sites) interaction were screened by applying various universally available datasets such as the miRNA SNP3.
Background: Neurodegenerative diseases are often the consequence of alterations in structures and functions of the Central Nervous System (CNS) in patients. Despite obtaining massive genomic information concerning the molecular basis of these diseases and since the neurological disorders are multifactorial, causal connections between pathological pathways at the molecular level and CNS disorders development have remained obscure and need to be elucidated to a great extent.
Objective: Animal models serve as accessible and valuable tools for understanding and discovering the roles of causative factors in the development of neurodegenerative disorders and finding appropriate treatments.
Aims: GnRH-DFF40 (gonadotropin releasing hormone-DNA fragmentation factor 40) humanized recombinant immunotoxin serves as a prospective candidate for targeted therapy of malignancies with over-expressed gonadotropin releasing hormone receptor (GnRHR). In this study, we attempted to generate a GnRH-based chimeric protein composed of human DFF40 fused with GnRH which encodes an apoptotic nuclease and specifically targets cancer cells displaying GnRH receptor overexpression.
Materials And Methods: A codon optimized, synthetic GnRH-DFF40 fusion gene and its single counterpart (DFF40) were constructed in pET28a expression vector.
Background: The selection of a suitable signal peptide that can direct recombinant proteins from the cytoplasm to the extracellular space is an important criterion affecting the production of recombinant proteins in Escherichia coli, a widely used host. Nanobodies are currently attracting the attention of scientists as antibody alternatives due to their specific properties and feasibility of production in E. coli.
View Article and Find Full Text PDFExosomes, as natural occurring vesicles, play highly important roles in the behavior and fate of ischemic diseases and different tumors. Secretion, composition, and function of exosomes are remarkably influenced by hypoxia in ischemic diseases and tumor microenvironment. Exosomes secreted from hypoxic cells affect development, growth, angiogenesis, and progression in ischemic diseases and tumors through a variety of signaling pathways.
View Article and Find Full Text PDFGnRH-DFF40 (gonadotropin releasing hormone - DNA fragmentation factor 40) is a humanized recombinant immunotoxin and serves as a prospective candidate for targeted therapy of gonadotropin releasing hormone receptor (GnRHR) overexpressing malignancies. However, its production in Escherichia coli in a soluble and functional form still remains a challenge. Here we introduce two successful and reproducible conditions for production and purification of "difficult-to-express" GnRH-DFF40 protein.
View Article and Find Full Text PDFBackground: The hyaluronic acid receptor CD44, is a cancer stem cell biomarker, playing important roles in cell adhesion, tumor progression and drug-resistance. Therefore, CD44 is a potential target for cancer treatment and its blockade could result in multi-factorial therapeutic effects.
Methods: Nanobodies against CD44 were isolated from a synthetic library with a diversity of 5×1011 CFU/ml using the phage display technique.
P53 mutation was detected through the application of a biosensing approach based on the decrease in the fluorescence of oligonucleotide-templated silver nanoclusters (DNA-AgNCs). To this end specific DNA scaffolds of two various nucleotide fragments were used. One of the scaffolds was enriched with two cytosine sequence fragment (C12).
View Article and Find Full Text PDFBackground: Helicobacter pylori vacA genotypes play an important role in the pathogenesis of severe gastrointestinal disease.
Materials And Methods: We identified a novel polymorphic site in the 3'-end region of H. pylori vacA gene, denoted by c1/-c2 (c1: with deletion of 15 bp), and examined associations of this and the previous four sites as well as cagA status with gastroduodenal diseases, in a total of 217 Iranian H.
Background: Helicobacter pylori (H. pylori)-specific genotypes have been closely correlated with an increased risk of gastric cancer (GC). The present study aimed to determine the distribution of H.
View Article and Find Full Text PDF