Publications by authors named "Shiv Dutt Purohit"

Carbon-based polymeric nanocomposite hydrogels (NCHs) represent a groundbreaking advancement in biomedical materials by integrating nanoparticles such as graphene, carbon nanotubes (CNTs), carbon dots (CDs), and activated charcoal (AC) into polymeric matrices. These nanocomposites significantly enhance the mechanical strength, electrical conductivity, and bioactivity of hydrogels, making them highly effective for drug delivery, tissue engineering (TE), bioinks for 3D Bioprinting, and wound healing applications. Graphene improves the mechanical and electrical properties of hydrogels, facilitating advanced tissue scaffolding and drug delivery systems.

View Article and Find Full Text PDF
Article Synopsis
  • Chitosan is an abundant biopolymer with properties like solubility and antimicrobial qualities, making it ideal for biomedical applications, particularly in bone tissue engineering.* -
  • This review addresses the lack of comprehensive research on chitosan-based electrospun materials and discusses chitosan's unique properties and the electrospinning process in detail.* -
  • The article also highlights recent advancements in chitosan applications and concludes with future prospects for its use in tissue engineering technology.*
View Article and Find Full Text PDF

Bacterial nanocellulose was produced here using static, static intermittent-fed batch (SIFB) and rotary disc bioreactor (RDB) mode. Economical black tea broth media with symbiotic consortia of bacteria and yeast (SCOBY) was used towards feasible BNC production (instead of commercial NCIM 2526 strain and conventional HS media). The physicochemical characterization of BNC produced in all three modes via FE-SEM, ATR-FTIR, XRD and TGA results showed a highly porous morphology, mostly Iα form, good crystallinity and thermal stability, respectively.

View Article and Find Full Text PDF

Effective treatment for full-thickness burn wounds has remained challenging for clinicians. Among various strategies, extracellular gel-based dressing materials have gained attention to promote effective and rapid wound healing. These gel-based materials are porous and have antioxidant, antibacterial, hydrophilic, biodegradation, and biocompatible properties and hence can be used to alleviate burn wound healing.

View Article and Find Full Text PDF

In this study, chitosan-gelatin-monetite (CGM)-based electrospun scaffolds have been developed that closely mimicked the microstructure and chemical composition of the extracellular matrix of natural bone. CGM-based nanofibrous composite scaffolds were prepared with the help of the electrospinning technique, post-cross-linked using ethyl(dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide solution to improve their stability in an aqueous environment. The prepared chitosan/gelatin (CG) scaffold showed an average fiber diameter of 308 ± 17 nm, whereas 5 and 7 wt% monetite containing CGMand CGMscaffolds, exhibited an average fiber diameter of 287 ± 13 and 265 ± 9 nm, respectively, revealing the fine distribution of monetite particles on the fibrous surface.

View Article and Find Full Text PDF

Decellularized extracellular matrix (ECM) has been widely used for wound healing. But, ECM failed to integrate tissue and restore the tissue function properly, when elevated levels of free radicals and biofilm formation occur at the wound site. Here, nanoemulgel systems were fabricated, considering the combinatorial approach of nanotechnology (nanoceria and curcumin nanoemulsion) and ECM gel of goat small intestine submucosa.

View Article and Find Full Text PDF

Decellularized animal tissues have been proven to be promising biomaterials for various tissue engineering (TE) applications. Among various animal tissues, small intestine submucosa (SIS) has gained attention of many researchers due to its easy availability from the abattoir waste, excellent physicochemical and biological characteristics of a good biomaterial. In this study, Caprine SIS was decellularized to get decellularized caprine SIS (DG-SIS).

View Article and Find Full Text PDF

There is a requirement of removal and replacement of vitreous for various ophthalmic diseases, e.g. retinopathy and retinal detachment.

View Article and Find Full Text PDF

Biomaterials derived from extracellular matrices (ECMs) were extensively used for skin tissue engineering and wound healing. ECM is a complex network of biomolecules (e.g.

View Article and Find Full Text PDF

For tissue engineering (TE), decellularized matrices gained huge potential as they consist of natural biomolecules which help in cell attachment and proliferation. Among various animal tissues, goat tissue has gained least attention in spite of the fact that goat tissue is less susceptible to disease transmission as compared to cadaveric porcine and bovine tissue. In this study, goat small intestine submucosa (G-SIS) was isolated from goat small intestine (G-SI), a waste from goat-slaughterhouse, and decellularized to obtain decellularized G-SIS (DG-SIS) biomatrix in the form of powder, gel and sponge form, so that it can be used for healing various types of wounds.

View Article and Find Full Text PDF

Bone injuries and fractures generally take a long period to heal itself. To address this problem, bone tissue engineering (BTE) has gained significant research impetus. Among the several techniques used for scaffold fabrication, electrospinning ought to be the most promising technique for the development of the nanostructured scaffolds.

View Article and Find Full Text PDF

Vitreous or vitreous humor is a complex transparent gel that fills the space between the lens and retina of an eye and acts as a transparent medium that allows light to pass through it to reach the photoreceptor layer (retina) of the eye. The vitreous humor is removed in ocular surgery (vitrectomy) for pathologies like retinal detachment, macular hole, diabetes-related vitreous hemorrhage detachment, and ocular trauma. Since the vitreous is not actively regenerated or replenished, there is a need for a vitreous substitute to fill the vitreous cavity to provide a temporary or permanent tamponade to the retina following some vitreoretinal surgeries.

View Article and Find Full Text PDF

Worldwide the number of bone damage/fracture, due to traumatic and accidental injuries, has been growing exponentially. Currently available treatments for bone repairing are slow, and often full functional recovery is not achieved. During slow healing process, free radicals are generated at fractured site, which causes further delay in healing process.

View Article and Find Full Text PDF

Bone damage, due to congenital defects, trauma and sports-related injuries, has become a foremost health problem all over the world. The present study involves fabrication of a nanocomposite scaffold of graphene oxide (GO), gelatin and alginate, with an aim of enhancing bone regeneration. The effect of varying concentration of GO on the scaffold properties was also determined.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong29vpnhmljr5413si6tjabdn6fup1jpb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once