Publications by authors named "Shiv D Kale"

Blight caused by pathogens has a devastating impact on crop production. species secrete an array of effectors, such as - (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance.

View Article and Find Full Text PDF

The Nlr family member X1 (Nlrx1) is an immuno-metabolic hub involved in mediating effective responses to virus, bacteria, fungi, cancer, and auto-immune diseases. We have previously shown that Nlrx1 is a critical regulator of immune signaling and mortality in several models of pulmonary fungal infection using the clinically relevant fungus . In the absence of Nlrx1, hosts produce an enhanced Th2 response primarily by CD103+ dendritic cell populations resulting in enhanced mortality immunopathogenesis as well as enhanced fungal burden.

View Article and Find Full Text PDF

Chitin, a major component of fungal cell walls, has been associated with allergic disorders such as asthma. However, it is unclear how mammals recognize chitin and the principal receptor(s) on epithelial cells that sense chitin remain to be determined. In this study, we show that LYSMD3 is expressed on the surface of human airway epithelial cells and demonstrate that LYSMD3 is able to bind chitin, as well as β-glucan, on the cell walls of fungi.

View Article and Find Full Text PDF

Motivation: Nearly 40% of the genes in sequenced genomes have no experimentally or computationally derived functional annotations. To fill this gap, we seek to develop methods for network-based gene function prediction that can integrate heterogeneous data for multiple species with experimentally based functional annotations and systematically transfer them to newly sequenced organisms on a genome-wide scale. However, the large sizes of such networks pose a challenge for the scalability of current methods.

View Article and Find Full Text PDF

Aspergillus fumigatus is an opportunistic fungal pathogen of immunocompromised patient populations. Mortality is thought to be context-specific and occurs via both enhanced fungal growth and immunopathogenesis. NLRX1 is a negative regulator of immune signaling and metabolic pathways implicated in host responses to microbes, cancers, and autoimmune diseases.

View Article and Find Full Text PDF

Chimeric antigen receptor T cell (CART) therapy, administration of certain T cell-agonistic antibodies, immune check point inhibitors, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and Toxic shock syndrome (TSS) caused by streptococcal as well as staphylococcal superantigens share one common complication, that is T cell-driven cytokine release syndrome (CRS) accompanied by multiple organ dysfunction (MOD). It is not understood whether the failure of a particular organ contributes more significantly to the severity of CRS. Also not known is whether a specific cytokine or signaling pathway plays a more pathogenic role in precipitating MOD compared to others.

View Article and Find Full Text PDF

is a ubiquitous mold that produces small airborne conidia capable of traversing deep into the respiratory system. Recognition, processing, and clearance of conidia by bronchial airway epithelial cells are thought to be relevant to host defense and immune signaling. Using z-stack confocal microscopy, we observed that only 10 to 20% of adherent conidia from the AF293 clinical isolate are internalized by BEAS-2B cells 6 h postchallenge and not prior.

View Article and Find Full Text PDF

Heterogeneous ensembles are an effective approach in scenarios where the ideal data type and/or individual predictor are unclear for a given problem. These ensembles have shown promise for protein function prediction (PFP), but their ability to improve PFP at a large scale is unclear. The overall goal of this study is to critically assess this ability of a variety of heterogeneous ensemble methods across a multitude of functional terms, proteins and organisms.

View Article and Find Full Text PDF

Background: Powdery mildew (PM) is one of the most important and widespread plant diseases caused by biotrophic fungi. Notably, while monocot (grass) PM fungi exhibit high-level of host-specialization, many dicot PM fungi display a broad host range. To understand such distinct modes of host-adaptation, we sequenced the genomes of four dicot PM biotypes belonging to Golovinomyces cichoracearum or Oidium neolycopersici.

View Article and Find Full Text PDF

Incidences of invasive pulmonary aspergillosis, an infection caused predominantly by Aspergillus fumigatus, have increased due to the growing number of immunocompromised individuals. While A. fumigatus is reliant upon deficiencies in the host to facilitate invasive disease, the distinct mechanisms that govern the host-pathogen interaction remain enigmatic, particularly in the context of distinct immune modulating therapies.

View Article and Find Full Text PDF

Summary: Networks have become ubiquitous in systems biology. Visualization is a crucial component in their analysis. However, collaborations within research teams in network biology are hampered by software systems that are either specific to a computational algorithm, create visualizations that are not biologically meaningful, or have limited features for sharing networks and visualizations.

View Article and Find Full Text PDF

Nucleolar dominance is a dramatic disruption in the formation of nucleoli and the expression of ribosomal RNA (rRNA) genes, characteristic of some plant and animal hybrids. Here, we report that F1 hybrids produced from reciprocal crosses between 2 sister species of Xenopus clawed frogs, X. muelleri and X.

View Article and Find Full Text PDF

An abnormal chromosome number, a condition known as aneuploidy, is a ubiquitous feature of cancer cells. A number of studies have shown that aneuploidy impairs cellular fitness. However, there is also evidence that aneuploidy can arise in response to specific challenges and can confer a selective advantage under certain environmental stresses.

View Article and Find Full Text PDF

Signaling pathways are a cornerstone of systems biology. Several databases store high-quality representations of these pathways that are amenable for automated analyses. Despite painstaking and manual curation, these databases remain incomplete.

View Article and Find Full Text PDF

The avirulence gene AvrLm4-7 of Leptosphaeria maculans, the causal agent of stem canker in Brassica napus (oilseed rape), confers a dual specificity of recognition by two resistance genes (Rlm4 and Rlm7) and is strongly involved in fungal fitness. In order to elucidate the biological function of AvrLm4-7 and understand the specificity of recognition by Rlm4 and Rlm7, the AvrLm4-7 protein was produced in Pichia pastoris and its crystal structure was determined. It revealed the presence of four disulfide bridges, but no close structural analogs could be identified.

View Article and Find Full Text PDF

Pathogen-host interactions are mediated in part by secreted microbial proteins capable of exploiting host cells for their survival. Several of these manipulations involve, but are not limited to, suppression of defense responses, alterations in host vesicular trafficking, and manipulation of gene expression. The delivery of such molecules from microbe to host has been of intense interest in several microbe-host systems.

View Article and Find Full Text PDF

A wide diversity of pathogens and mutualists of plant and animal hosts, including oomycetes and fungi, produce effector proteins that enter the cytoplasm of host cells. A major question has been whether or not entry by these effectors can occur independently of the microbe or requires machinery provided by the microbe. Numerous publications have documented that oomycete RxLR effectors and fungal RxLR-like effectors can enter plant and animal cells independent of the microbe.

View Article and Find Full Text PDF

Resistance to Phytophthora sojae (Rps) genes have been widely used in soybean against root and stem rot diseases caused by this oomycete. Among 15 known soybean Rps genes, Rps1k has been the most widely used in the past four decades. Here, we show that the products of two distinct but closely linked RxLR effector genes are detected by Rps1k-containing plants, resulting in disease resistance.

View Article and Find Full Text PDF

Oomycetes such as Phytophthora sojae employ effector proteins that enter plant cells to facilitate infection. Entry of some effector proteins is mediated by RxLR motifs in the effectors and phosphoinositides (PIP) resident in the host plasma membrane such as phosphatidylinositol 3-phosphate (PtdIns(3)P). Recent reports differ regarding the regions on RxLR effectors involved in PIP recognition.

View Article and Find Full Text PDF