Micromachines (Basel)
September 2024
A projection lens with a 30-degree field of view is developed for use in augmented reality (AR) glasses, including a waveguide combiner designed for a 0.35-inch LCoS panel. The entrance pupil diameter of the lens is 14 mm and the lens has an effective focal length of 16.
View Article and Find Full Text PDFWe delve into the distinctive color gamut characteristics resulting from color dispersion of surface relief grating (SRG) and wavelength degeneracy of volume holographic optical element (VHOE) in a diffractive light guide. While a laser-like spectrum achieves an impressive 194% sRGB color gamut for both cases, it proves unsuitable for VHOE light guides due to limitations in breaking the field of view (FOV) of the display. Conversely, a broad-band light source, such as LEDs, offers continuous FOV but reduces the common color gamut to 50% sRGB.
View Article and Find Full Text PDFA highly dispersive, diffractive optical element is designed and realized for an extremely high spectral resolution spectroscopy for exoplanet telescope application. Our design uses an annular Fresnel hologram to transform incident starlight directly into a spectrogram. The recording of the hologram is accomplished using two spherical waves of different radius of curvature.
View Article and Find Full Text PDFIn this paper, we present a study of observation of phase error of a volume holographic storage disc during the reading process when the disc is rotated or displaced in the theoretical calculation and the corresponding experiment. This additional phase error will dramatically decrease the bit error rate of a phase-only signal, even applying double-frequency shearing interferometry to retrieve the stored phase signal. Then we propose a novel approach to solve the problem.
View Article and Find Full Text PDFThe era of flexible optoelectronics demands development of wearable and bendable structures, foldable touch screens, paper-like displays, and curved and flexible solid-state lighting devices. Here, we demonstrate the fabrication of highly flexible light valves using polymer-dispersed liquid crystal (PDLC) and TiO/Ag/TiO transparent conductive films. TiO/Ag/TiO multilayers were prepared by magnetron sputtering technique on polyethylene terephthalate (PET) substrates at room temperature.
View Article and Find Full Text PDFIn the first time, a simulation model with considering the recording dynamics of material is built and is used to simulate evolution of the grating strength of the recorded hologram in a coaxial volume holographic memory system. In addition, phase modulation by lens array in the reference is introduced and observed to perform better diffracted signal quality and higher shifting selectivity, in both simulation and experiment. The use of lens array is found to provide multiple advantages in volume holographic memory system.
View Article and Find Full Text PDFBased on a vector wave theory of volume holograms, dependence of holographic reconstruction on the polarization states of the writing and reading beams is discussed. It is found that under paraxial approximation the circular polarization holograms provide a better distinction of the reading beams. Characteristics of recording polarization holograms in thick phenanthrenequinone-doped poly(methyl methacrylate) (PQ/PMMA) photopolymer are experimentally investigated.
View Article and Find Full Text PDFA near-infrared sensitive hybrid device, based on a Ru-doped BSO photorefractive substrate and polymer dispersed liquid crystal (PDLC) layer, is reported. It is found that the photoexcited charge carriers generated in the BSO:Ru substrate create an optically induced space charge field, sufficient to penetrate into the PDLC layer and to re-orient the LC molecules inside the droplets. Beam-coupling measurements at the Bragg regime are performed showing prospective amplification values and high spatial resolution.
View Article and Find Full Text PDFN, N-dimethyl-4-nitroaniline doping enables red-light holographic recording that was originally insensitive in thick phenanthrenequinone/poly(methyl methacrylate) photopolymer to have reasonable sensitivity. A volume hologram was recorded by a 647 nm laser with maximum diffraction efficiency of about 43% in a 2-mm-thick sample. A Bragg selectivity curve and an image hologram reconstruction are also demonstrated.
View Article and Find Full Text PDFThe effect of Rh doping in Bi(12)TiO(20) (BTO) crystals on the photosensitivity and recording speed at 1064 nm is reported. Response time of 0.1 s is measured during real-time holographic recording without any preliminary treatments.
View Article and Find Full Text PDFVolume holographic optical disc (VHOD) technology is simpler than the angular multiplexing holographic system. However, disc rotation usually causes pixel migration, thus reducing signal quality. This study proposes a special geometrical arrangement to counteract pixel migration.
View Article and Find Full Text PDFProlonged read-out process of a hologram recorded at near infrared with simultaneous green light exposure is measured in Ru-doped Bi12SiO20 crystal. The experimental results are confirmed by numerical simulations, suggesting two different traps involved in the space-charge transport mechanism. In addition, quasi-permanent holographic recording of image with fast updating speed by using two-wavelength recording is demonstrated.
View Article and Find Full Text PDFWe have proposed and demonstrated a holographic security storage system that is implemented with a shift multiplexing technique. The security function of this storage system is achieved by using a microdiffuser (MD) for random phase encoding of the reference beams. The apparatus of random phase encoding in this system offers an additional and flexible function during the recording processes.
View Article and Find Full Text PDFThe enhanced conversion efficiency of the InGaP/GaAs dual-junction solar cell was demonstrated utilizing broad-band and omnidirectional antireflection nanorod arrays. The nanorod arrays were fabricated by self-assembled Ni clusters, followed by inductively-coupled-plasma reactive ion etching. The conversion efficiency measured under one-sun air mass 1.
View Article and Find Full Text PDFA reflective light-scattering (RLS) microscope with structured illumination (SI) provides subdiffraction resolution and improves the image quality of gold nanoparticles in biological systems. The three-dimensional (3D)-structured pattern is rapidly and precisely controlled with a spatial light modulator and scrambled at the conjugate image plane to increase spatial incoherence. The reconstructed SI-RLS image of 100 nm gold nanoparticles reveals lateral and axial resolutions of approximately 117 and 428 nm.
View Article and Find Full Text PDFAzoaromatic dyes have been extensively investigated over the past decade due to their potential use in a variety of optical devices that exploit their ultrafast photoisomerization processes. Among the azoaromatic dyes, Disperse Red 19 is a commercially available azobenzene nonlinear optical chromophore with a relatively high ground-state dipole moment. In the present study, we used ultrafast time-resolved spectroscopy to clarify the dynamics of a push-pull substituted azobenzene dye.
View Article and Find Full Text PDFVolume polarization holographic recording in phenanthrenequinone-doped poly (methyl methacrylate) photopolymer is obtained. Photoinduced birefringence in a 2 mm thick sample is measured by a phase-modulated ellipsometry. The birefringence induced in this material by linearly polarized beam at 514 nm reaches 1.
View Article and Find Full Text PDFLight-management is critical to thin film solar cells due to their usually limited optical absorption in the active layer. Conventional approaches involve employing separate techniques for anti-reflection and light trapping. Here, we demonstrate an embedded biomimetic nanostructure (EBN) that achieves both effects for hydrogenated amorphous silicon (a-Si:H) solar cells.
View Article and Find Full Text PDFReal-time holographic recording and an improvement of the response time in ruthenium (Ru)-doped Bi(12)SiO(20) (BSO) crystal at 1064 nm is obtained. Using green light pre-exposure, a significant operation speed of 60 ms is achieved. In addition, the ability for image reconstruction is demonstrated in Ru-doped BSO, supporting further applications as reversible media for real-time image processing at the near-IR spectral range.
View Article and Find Full Text PDF