Static magnetic field (SMF) promoting bone tissue remodeling is a potential non-invasive therapy technique to accelerate orthodontic tooth movement (OTM). The periodontal ligament stem cells (PDLSCs), which are mechanosensitive cells, are essential for force-induced bone remodeling and OTM. However, whether and how the PDLSCs influence the process of inflammatory bone remodeling under mechanical force stimuli in the presence of SMFs remains unclear.
View Article and Find Full Text PDFHistone deacetylases (HDACs) play important roles in the post-translational modification of histones, which can affect the biological properties of cells, thereby altering disease progression and outcomes. However, it remains unclear how HDAC9, a class II HDAC, affects the autophagy of human periodontal ligament stem cells (hPDLSCs). We aimed to identify its role in autophagy in hPDLSCs in an inflammatory environment and to explore the potential regulatory mechanisms.
View Article and Find Full Text PDFInfluenza neuraminidase (NA) has received increasing attention as an effective vaccine target. However, its mutational tolerance is not well characterized. Here, the fitness effects of >6,000 mutations in human H3N2 NA are probed using deep mutational scanning.
View Article and Find Full Text PDF3D point clouds acquired by scanning real-world objects or scenes have found a wide range of applications including immersive telepresence, autonomous driving, surveillance, etc. They are often perturbed by noise or suffer from low density, which obstructs downstream tasks such as surface reconstruction and understanding. In this paper, we propose a novel paradigm of point set resampling for restoration, which learns continuous gradient fields of point clouds that converge points towards the underlying surface.
View Article and Find Full Text PDFPeriodontal ligament stem cells (PDLSCs) possess self-renewal and multilineage differentiation potential and exhibit great potential for the treatment of bone tissue defects caused by inflammation. Previous studies have indicated that static magnetic field (SMF) can enhance the proliferation and differentiation of mesenchymal stem cells (MSCs). SMF has been widely used to repair bone defects and for orthodontic and implantation treatment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2022
Appl Bionics Biomech
December 2017
The aim of this study is the utilization of human medical CT images to quantitatively evaluate two sorts of "error-driven" material algorithms, that is, the isotropic and orthotropic algorithms, for bone remodelling. The bone remodelling simulations were implemented by a combination of the finite element (FE) method and the material algorithms, in which the bone material properties and element axes are determined by both loading amplitudes and daily cycles with different weight factor. The simulation results showed that both algorithms produced realistic distribution in bone amount, when compared with the standard from CT data.
View Article and Find Full Text PDF