Unlabelled: Pseudouridylation, the conversion of uridine (U) to pseudouridine (Ѱ), is one of the most prevalent and evolutionary conserved RNA modifications, which is catalyzed by pseudouridine synthase (PUS) enzymes. Ѱs play a crucial epitranscriptomic role by regulating attributes of cellular RNAs across diverse organisms. However, the precise biological functions of PUSs in plants remain largely elusive.
View Article and Find Full Text PDFRNA modifications and editing changes constitute 'epitranscriptome' and are crucial in regulating the development and stress response in plants. Exploration of the epitranscriptome and associated machinery would facilitate the engineering of stress tolerance in crops. RNA editing and modifications post-transcriptionally decorate almost all classes of cellular RNAs, including tRNAs, rRNAs, snRNAs, lncRNAs and mRNAs, with more than 170 known modifications, among which mA, Ψ, mC, 8-OHG and C-to-U editing are the most abundant.
View Article and Find Full Text PDFSenescence is the ultimate phase in the life cycle of leaves which is crucial for recycling of nutrients to maintain plant fitness and reproductive success. The earliest visible manifestation of leaf senescence is their yellowing, which usually commences with the breakdown of chlorophyll. The degradation process involves a gradual and highly coordinated disassembly of macromolecules resulting in the accumulation of nutrients, which are subsequently mobilized from the senescing leaves to the developing organs.
View Article and Find Full Text PDF