Salicylic acid (SA) is widely used in food storage, preservatives, additives, healthcare, and the pharmaceutical industry. However, various poisoning symptoms are frequently reported upon ingestion of a large amount of SA. Therefore, discovering new tools for sensing SA with fast, simple, and portable performance is imperative.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
3D bioprinting with cell-laden materials is an emerging technique for fabricating functional tissue constructs. However, current cell-laden bioinks often lack sufficient cytocompatibility with commonly used UV-light sources. In this study, green to red photoinduced hydrogel crosslinking was obtained by introducing synthesized biosafety photoinitiators and used in light-based direct ink writing (DIW) 3D printing for enabling cell encapsulation successfully.
View Article and Find Full Text PDFThe field of biofabrication imposes stringent requirements on the polymerization activity and biosafety of photopolymeric hydrogel systems. In this investigation, we designed and synthesized four hemicyanine dyes with a D-π-A structure specifically tailored for biofabrication purposes. These novel dyes, incorporating carbazole (CZ), triphenylamine (TPA), anthracene (AN), and benzodithiophene (BDT) as electron donors, along with heterocyclic salt (IN) as electron acceptors, were prepared using a straightforward synthesis method.
View Article and Find Full Text PDFNowadays, reactive oxygen species (ROS) have been acknowledged as promising bactericidal targets against pesticide-resistant bacteria. Herein, to further excavate more excellent ROS inducers, simple 1,2,3,4-tetrahydro-β-carboline derivatives containing a 3-aminopropanamide moiety were prepared and assessed for their antibacterial potency. Notably, three promising compounds displayed significant antibacterial potency.
View Article and Find Full Text PDFPlant bacterial diseases are an intractable problem due to the fact that phytopathogens have acquired strong resistances for traditional pesticides, resulting in restricting the quality and yield of agricultural products around the world. To develop new agrochemical alternatives, we prepared a novel series of sulfanilamide derivatives containing piperidine fragments and assessed their antibacterial potency. The bioassay results revealed that most molecules displayed excellent in vitro antibacterial potency towards pv.
View Article and Find Full Text PDFBackground: Gradually aggravated disease caused by phytopathogenic bacteria severely restricts food security and crop yield, and few pesticides can relieve this severe situation. Thus, development and excavation of new agrochemicals with high bioactivity and novel action mechanism may be a feasible strategy to control intractable bacterial diseases. As a privileged molecular framework, steroid molecules exhibit diversiform bioactivities.
View Article and Find Full Text PDFIn the maxillofacial area, soft and hard tissue abnormalities are caused by trauma, tumors, infection, and other causes that expose the maxillofacial region to the surface of the human body. Patients' normal physiological function and appearance are interfered with, and their mental health is adversely impacted, reducing their overall life quality. The pursuit of appropriate medical treatments to correct these abnormalities is thus vital.
View Article and Find Full Text PDFBEX family genes are expressed in various tissues and play significant roles in neuronal development. A mouse model of gene knock-out was generated in this study, using the CRISPR-Cas9 system. Transcriptomic analysis of the brain was performed to identify genes and pathways under regulation.
View Article and Find Full Text PDFAn efficient and concise one-pot strategy for the synthesis of multisubstituted pyridones via a one-pot three-component cascade reaction catalyzed by CsCO under solvent-free conditions has been developed. The substituent-controlled chemoselective cycloaddition process involved steps including a Michael addition/ethanol elimination/intermolecular cyclization sequence utilizing anilines, diethyl acetylenedicarboxylate, and diethyl ethoxymethylenemalonate. In doing so, various 2-pyridone and 4-pyridone species (41 examples) could be obtained in good to excellent yields.
View Article and Find Full Text PDFMicrowave irradiation, four-component branched domino reaction of methyl acetoacetate/2,4-pentanedione, diethyl malonate, triethyl orthoformate and amines offering an extremely efficient strategy for the construction of fully substituted 2-pyridone derivatives under sustainable conditions is established. This self-sorting branched domino transformation is proposed to proceed separate through N-nucleophilic addition and imine-enamine tautomerization/condensation reaction generated from enamino ester and diethyl ethoxymethylenemalonate, and then would be subjected to an aza-ene reaction and intramolecular cyclization mechanism to afford the 2-pyridones with only water and ethanol as byproducts. The simple experimental procedure, high bond-forming efficiency, step and atom economy, inexpensive readily available starting materials, moderate to excellent yields, and good functional group compatibility are other noteworthy advantages of this method.
View Article and Find Full Text PDFAccurate PET system timing alignment minimizes the coincidence time window and therefore reduces random events and improves image quality. It is also critical for time-of-flight (TOF) image reconstruction. Here, we use a thin annular cylinder (shell) phantom filled with a radioactive source and located axially and centrally in a PET camera for the timing alignment of a TOF PET system.
View Article and Find Full Text PDFElectrically manipulating electron spins based on Rashba spin-orbit coupling (SOC) is a key pathway for applications of spintronics and spin-based quantum computation. Two-dimensional electron systems (2DESs) offer a particularly important SOC platform, where spin polarization can be tuned with an electric field perpendicular to the 2DES. Here, by measuring the tunable circular photogalvanic effect (CPGE), we present a room-temperature electric-field-modulated spin splitting of surface electrons on InN epitaxial thin films that is a good candidate to realize spin injection.
View Article and Find Full Text PDFCore-level and valence band spectra of In Ga N films were measured using hard x-ray photoemission spectroscopy (HX-PES). Fine structure, caused by the coupling of the localized Ga 3d and In 4d with N 2s states, was experimentally observed in the films. Because of the large detection depth of HX-PES (∼20 nm), the spectra contain both surface and bulk information due to the surface band bending.
View Article and Find Full Text PDFUnlabelled: The dedicated murine PET (MuPET) scanner is a high-resolution, high-sensitivity, and low-cost preclinical PET camera designed and manufactured at our laboratory. In this article, we report its performance according to the NU 4-2008 standards of the National Electrical Manufacturers Association (NEMA). We also report the results of additional phantom and mouse studies.
View Article and Find Full Text PDFA fully digital FPGA-based high count-rate coincidence system has been developed for TOF (Time of Flight) and non-TOF PET cameras. Using a hybrid of AND-logic and Time-mark technology produced both excellent timing resolution and high processing speed. In this hybrid architecture, every gamma event was synchronized by a 125 MHz system clock and generating a trigger associated with a time-mark given by an 8-bit high-resolution TDC (68.
View Article and Find Full Text PDFA lower-cost high-sensitivity high-resolution positron emission mammography (PEM) camera is developed. It consists of two detector modules with the planar detector bank of 20 × 12 cm(2). Each bank has 60 low-cost PMT-Quadrant-Sharing (PQS) LYSO blocks arranged in a 10 × 6 array with two types of geometries.
View Article and Find Full Text PDFThe goal of this work is to develop a novel, accurate, real-time digital baseline restorer using online statistical processing for a high count-rate digital system such as positron emission tomography (PET). In high count-rate nuclear instrumentation applications, analog signals are DC-coupled for better performance. However, the detectors, pre-amplifiers and other front-end electronics would cause a signal baseline drift in a DC-coupling system, which will degrade the performance of energy resolution and positioning accuracy.
View Article and Find Full Text PDFIn photomultiplier-quadrant-sharing (PQS) geometry for positron emission tomography applications, each PMT is shared by four blocks and each detector block is optically coupled to four round PMTs. Although this design reduces the cost of high-resolution PET systems, when the camera consists of detector panels that are made up of square blocks, half of the PMT's sensitive window remains unused at the detector panel edge. Our goal was to develop a LYSO detector panel which minimizes the unused portion of the PMTs for a low-cost, high-resolution, and high-sensitivity positron emission mammography (PEM) camera.
View Article and Find Full Text PDFWe developed a detailed Monte Carlo simulation method to study the time resolution of detectors for time-of-flight positron emission tomography (TOF PET). The process of gamma ray interaction in detectors, scintillation light emission and transport inside the detectors, the photoelectron generation and anode signal generation in the photomultiplier tube (PMT), and the electronics process of discriminator are simulated. We tested this simulation method using published experimental data, and found that it can generate reliable results.
View Article and Find Full Text PDFWe developed high resolution L(Y)SO detectors for human and animal PET applications using Photomultiplier-quadrant-sharing (PQS) technology. The crystal sizes were 1.27 × 1.
View Article and Find Full Text PDF