Publications by authors named "Shishuo Zhou"

The therapeutic application of chemodynamic therapy (CDT) is severely limited by the insufficient intracellular HO and acidity in tumor. Herein, an acid-sensitive nanoplatform (ZIF67-ICG/TAM@GOx) to promote HO and acidity enhancement through intracellular cyclic amplification for enhanced CDT is rationally designed. Notably, the acidic conditions of the tumor microenvironment (TME) can turn on the switch of the nanoplatform, setting free the loaded tamoxifen (TAM) and indocyanine green (ICG).

View Article and Find Full Text PDF

Since there are several limitations in cancer treatment for traditional chemotherapy, such as side effects, poor prognosis and drug resistance, developing new combined therapy is urgently needed. In this work, a biocompatible, simple and tumor microenvironment-responsive nanotheranostics (PCN-Oxpt/PEG) was built to favor the chemotherapy/ferroptosis/immunomodulation synergism in cancer. This nanotheranostics is constructed by modifying oxaliplatin prodrug and PEG on Fe(III) - porphyrin metal-organic frameworks (PCN(Fe) MOFs).

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is an effective noninvasive therapeutic strategy that can convert oxygen to highly cytotoxic singlet oxygen (O) through the co-localization of excitation light and photosensitizers. However, compromised by the hypoxic tumor microenvironment, the therapeutic efficacy of PDT is reduced seriously. Herein, to overcome tumor-associated hypoxia, and further achieve tumor-targeted synergistic chemotherapy/PDT/photothermal therapy (PTT), we have constructed a biodegradable oxygen-producing nanoplatform (named Ini@PM-HP), which was composed of the porous metal-organic framework (PCN-224(Mn)), the poly (ADP-ribose) polymerase (PARP) inhibitor (Iniparib), and the polydopamine-modified hyaluronic acid (HA-PDA).

View Article and Find Full Text PDF

Background: Chemodynamic therapy (CDT), employing Fenton or Fenton-like catalysts to convert hydrogen peroxide (HO) into toxic hydroxyl radicals (·OH) to kill cancer cells, holds great promise in tumor therapy due to its high selectivity. However, the therapeutic effect is significantly limited by insufficient intracellular HO level in tumor cells. Fortunately, β-Lapachone (Lapa) that can exert HO-supplementing functionality under the catalysis of nicotinamide adenine dinucleotide (phosphate) NAD(P)H: quinone oxidoreductase-1 (NQO1) enzyme offers a new idea to solve this problem.

View Article and Find Full Text PDF

A combination of chemotherapy and phototherapy has been proposed as a promising treatment for esophageal cancer (EC). Irinotecan as a first-line treatment option is widely prescribed for metastatic EC, however, its clinical application is extremely restricted by the low conversion rate to SN38, severe myelosuppression and diarrhea. As a more potent active metabolite of irinotecan, SN38 is a better substitution for irinotecan, but the poor water solubility and the difficulty of encapsulation hindered its medical application.

View Article and Find Full Text PDF

The rampant usage of antibiotics has led to the emergence of toxicity, especially hepatotoxicity and the emergence of microbial drug resistance. Hence, a series of novel hepatoprotective, biocompatible, antibacterial silver nanoformulations (AS-AgNPs) were developed by using the important Chinese medicinal plant Angelica sinensis. The different size of AS-AgNPs were characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR).

View Article and Find Full Text PDF

Despite its great potential in cancer therapy, phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), often cause metastasis of tumors. Immunotherapy has revolutionized the cancer treatment owing to the capability of activating immune system to eliminate tumors. However, the integration of phototherapy and immunotherapy in a single nanoagent for cancer therapy is still a challenging task.

View Article and Find Full Text PDF

Multifunctional nanotheranostic systems with both therapeutic and imaging functions are highly desired for the development of more effective and less toxic anti-tumor drugs. Herein, a simple but effective method is reported to fabricate a novel PCN-CuS-FA-ICG-based nanoplatform for dual-modal imaging-guided synergistic photothermal/photodynamic therapy. Porphyrinic metal-organic frameworks with CuS NPs are obtained in aqueous solution via a simple post-synthesis strategy.

View Article and Find Full Text PDF