Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal (GI) tract. Fecal calprotectin (fCAL) is a noninvasive laboratory test used in the diagnosis and monitoring of IBDs such as Crohn's disease and ulcerative colitis. The fCAL send-out test that our facility has been offering so far uses an ELISA-based method.
View Article and Find Full Text PDFBackground: Recently, a major manufacturer recalled several lots of iron assay reagent due to positive bias of roughly 15%-30% and the cause remains unknown. This study investigated the root cause of this positive bias and evaluated a simple practical approach to improve the assay.
Methods: Performance comparison of recalled and unimpacted iron assay kits was done utilizing calibrators, quality control (QC) materials, and 42 remnant patient samples.
Motivation: Detecting oscillations in time series remains a challenging problem even after decades of research. In chronobiology, rhythms (for instance in gene expression, eclosion, egg-laying, and feeding) tend to be low amplitude, display large variations amongst replicates, and often exhibit varying peak-to-peak distances (non-stationarity). Most currently available rhythm detection methods are not specifically designed to handle such datasets, and are also limited by their use of P-values in detecting oscillations.
View Article and Find Full Text PDFDetecting oscillations in time series remains a challenging problem even after decades of research. In chronobiology, rhythms in time series (for instance gene expression, eclosion, egg-laying and feeding) datasets tend to be low amplitude, display large variations amongst replicates, and often exhibit varying peak-to-peak distances (non-stationarity). Most currently available rhythm detection methods are not specifically designed to handle such datasets.
View Article and Find Full Text PDFThe adherens junctions between epithelial cells involve a protein complex formed by E-cadherin, β-catenin, α-catenin and F-actin. The stability of this complex was a puzzle for many years, since in vitro studies could reconstitute various stable subsets of the individual proteins, but never the entirety. The missing ingredient turned out to be mechanical tension: a recent experiment that applied physiological forces to the complex with an optical tweezer dramatically increased its lifetime, a phenomenon known as catch bonding.
View Article and Find Full Text PDFThe conformation of a polymer chain in solution is coupled to the local structure of the surrounding solvent and can undergo large changes in response to variations in solvent density and temperature. The many-body effects of solvent on the structure of an n-mer polymer chain can be formally mapped to an exact n-body solvation potential. Here, we use a pair decomposition of this n-body potential to construct a set of two-body potentials for a Lennard-Jones (LJ) polymer chain in explicit LJ solvent.
View Article and Find Full Text PDFThe average conformation of a flexible chain molecule in solution is coupled to the local solvent structure. In a dense solvent, local chain structure often mirrors the pure solvent structure, whereas, in a dilute solvent, the chain can strongly perturb the solvent structure which, in turn, can lead to either chain expansion or compression. Here we use Monte Carlo (MC) simulation to study such solvent effects for a short Lennard-Lones (LJ) chain in monomeric LJ solvent.
View Article and Find Full Text PDF