Publications by authors named "Shirshendu Dey"

Neurons are vulnerable to physical insults, which compromise the integrity of both dendrites and axons. Although several molecular pathways of axon regeneration are identified, our knowledge of dendrite regeneration is limited. To understand the mechanisms of dendrite regeneration, we used the PVD neurons in C.

View Article and Find Full Text PDF

The adult nervous system has a limited capacity to regenerate after accidental damage. Post-injury functional restoration requires proper targeting of the injured axon to its postsynaptic cell. Although the initial response to axonal injury has been studied in great detail, it is rather unclear what controls the re-establishment of a functional connection.

View Article and Find Full Text PDF

Restoration of lost function following a nervous system injury is limited in adulthood as the regenerative capacity of nervous system declines with age. Pharmacological approaches have not been very successful in alleviating the consequences of nervous system injury. On the contrary, physical activity and rehabilitation interventions are often beneficial to improve the health conditions in the patients with neuronal injuries.

View Article and Find Full Text PDF

Neuronal injury often leads to devastating consequences such as loss of senses or locomotion. Restoration of function after injury relies on whether the injured axons can find their target cells. Although fusion between injured proximal axon and distal fragment has been observed in many organisms, its functional significance is not clear.

View Article and Find Full Text PDF

We demonstrate ultrafast laser driven nonlinear scanning tunneling microscopy (STM), under ambient conditions. The design is an adaptation of the recently introduced cross-polarized double beat method, whereby z-polarized phase modulated fields are tightly focused at a tunneling junction consisting of a sharp tungsten tip and an optically transparent gold film as substrate. We demonstrate the prerequisites for ultrafast time-resolved STM through an operative mechanism of nonlinear laser field-driven tunneling.

View Article and Find Full Text PDF

Electron transport across cataphoretically deposited dodecylamine capped gold nanocluster rough films on Si(111) substrate is investigated using current sensing atomic force microscopy. Contact mode images depict uniform deposition of agglomerates of gold nanoparticles. The current images display strong correlation with topographic images.

View Article and Find Full Text PDF