We study hyperuniform properties in various two-dimensional periodic and quasiperiodic point patterns. Using the histogram of the two-point distances, we develop an efficient method to calculate the hyperuniformity order metric, which quantifies the regularity of the hyperuniform point patterns. The results are compared with those calculated with the conventional running average method.
View Article and Find Full Text PDFThe currently established electronic phase diagram of cuprates is based on a study of single- and double-layered compounds. These CuO planes, however, are directly contacted with dopant layers, thus inevitably disordered with an inhomogeneous electronic state. Here, we solve this issue by investigating a 6-layered BaCaCuO(F,O) with inner CuO layers, which are clean with the extremely low disorder, by angle-resolved photoemission spectroscopy (ARPES) and quantum oscillation measurements.
View Article and Find Full Text PDFUsing a cluster extension of the dynamical mean-field theory, we show that strongly correlated metals subject to Hund's physics exhibit significant electronic structure modulations above magnetic transition temperatures. In particular, in a ferromagnet having a large local moment due to Hund's coupling (Hund's ferromagnet), the Fermi surface expands even above the Curie temperature (T_{C}) as if a spin polarization occurred. Behind this phenomenon, effective "Hund's physics" works in momentum space, originating from ferromagnetic fluctuations in the strong-coupling regime.
View Article and Find Full Text PDFIn cuprate superconductors with high critical transition temperature ( ), light hole-doping to the parent compound, which is an antiferromagnetic Mott insulator, has been predicted to lead to the formation of small Fermi pockets. These pockets, however, have not been observed. Here, we investigate the electronic structure of the five-layered BaCaCuO(F,O), which has inner copper oxide (CuO) planes with extremely low disorder, and find small Fermi pockets centered at (π/2, π/2) of the Brillouin zone by angle-resolved photoemission spectroscopy and quantum oscillation measurements.
View Article and Find Full Text PDFThe thermoelectric effect is attracting a renewed interest as a concept for energy harvesting technologies. Nanomaterials have been considered a key to realize efficient thermoelectric conversions owing to the low dimensional charge and phonon transports. In this regard, recently emerging two-dimensional materials could be promising candidates with novel thermoelectric functionalities.
View Article and Find Full Text PDFWe study the relationship between the pseudogap and Fermi-surface topology in the two-dimensional Hubbard model by means of the cellular dynamical mean-field theory. We find two possible mean-field metallic solutions on a broad range of interactions, doping, and frustration: a conventional renormalized metal and an unconventional pseudogap metal. At half filling, the conventional metal is more stable and displays an interaction-driven Mott metal-insulator transition.
View Article and Find Full Text PDFUsing a laser-excited angle-resolved photoemission spectroscopy capable of bulk sensitive and high-energy resolution measurements, we reveal a new phenomenon of superconductors in the optimally doped trilayer Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+δ}. We observe a hybridization of the Bogoliubov bands derived from the inner and outer CuO_{2} planes with different magnitudes of energy gaps. Our data clearly exhibit the splitting of coherent peaks and the consequent enhancement of spectral gaps.
View Article and Find Full Text PDFRecent progress in the fully nonempirical calculation of the superconducting transition temperature (T ) is reviewed. Especially, this study focuses on three representative light-element high-T superconductors, i.e.
View Article and Find Full Text PDFAlkali-doped fullerides (A3C60 with A = K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature (Tc) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-Tc superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides.
View Article and Find Full Text PDFThe dynamics of a microscopic cuprate model, namely, the two-dimensional Hubbard model, is studied with a cluster extension of the dynamical mean-field theory. We find a nontrivial structure of the frequency-dependent self-energies, which describes an unprecedented interplay between the pseudogap and superconductivity. We show that these properties are well described by quasiparticles hybridizing with (hidden) fermionic excitations, emergent from the strong electronic correlations.
View Article and Find Full Text PDFAlkali-doped fullerides A 3C60 (A = K, Rb, Cs) are surprising materials where conventional phonon-mediated superconductivity and unconventional Mott physics meet, leading to a remarkable phase diagram as a function of volume per C60 molecule. We address these materials with a state-of-the-art calculation, where we construct a realistic low-energy model from first principles without using a priori information other than the crystal structure and solve it with an accurate many-body theory. Remarkably, our scheme comprehensively reproduces the experimental phase diagram including the low-spin Mott-insulating phase next to the superconducting phase.
View Article and Find Full Text PDFWe study the evolution of metals from Mott insulators in the carrier-doped 2D Hubbard model using a cluster extension of the dynamical mean-field theory. While the conventional metal is simply characterized by the Fermi surface (pole of the Green function G), interference of the zero surfaces of G with the pole surfaces becomes crucial in the doped Mott insulators. Mutually interfering pole and zero surfaces are dramatically transferred over the Mott gap, when lightly doped holes synergetically loosen the doublon-holon binding.
View Article and Find Full Text PDFIn order to resolve the long-standing issue of how itinerant ferromagnetism is affected by lattice structure and Hund's coupling, we compare various three-dimensional lattice structures in the single- and multiorbital Hubbard models with the dynamical mean-field theory with an improved quantum Monte Carlo algorithm that preserves the spin-SU(2) symmetry. The result indicates that both the lattice structure and the d-orbital degeneracy are essential for the ferromagnetism in the parameter region representing a transition metal. Specifically, (a) Hund's coupling, despite the common belief, is important, which is here identified to come from particle-hole scatterings, and (b) the ferromagnetism is a correlation effect (outside the Stoner picture) as indicated from the band-filling dependence.
View Article and Find Full Text PDFAims: To examine various dimensions of reliability of the Craniomandibular Index, a commonly used instrument for quantifying the severity of signs and symptoms of temporomandibular disorders.
Methods: Classical psychometric theory and generalizability theory were used to assess the reliability of data obtained from a calibration study of examiners participating in a multi-site clinical trial and from a random community sample.
Results: The reliability of aggregate scores formed by summing individual binary scored items was high, with intraclass correlations ranging from 0.
Statement Of Problem: Previous studies in complete denture wearers evaluated the relationship between diet and measures of chewing, yet only isolated nutrient intake was considered. This limited information makes the assessment of overall diet quality and the planning of interventions difficult.
Purpose: This study investigated the relationship of complete denture quality to masticatory performance, perceived ability to chew, and diet quality as measured by the Healthy Eating Index (HEI), an overall diet quality index.