Spinal bulbar muscular atrophy (SBMA), the first identified CAG-repeat expansion disorder, is an X-linked neuromuscular disorder involving CAG-repeat-expansion mutations in the androgen receptor (AR) gene. We utilized CRISPR-Cas9 gene editing to engineer novel isogenic human induced pluripotent stem cell (hiPSC) models, consisting of isogenic AR knockout, control and disease lines expressing mutant AR with distinct repeat lengths, as well as control and disease lines expressing FLAG-tagged wild-type and mutant AR, respectively. Adapting a small-molecule cocktail-directed approach, we differentiate the isogenic hiPSC models into motor neuron-like cells with a highly enriched population to uncover cell-type-specific mechanisms underlying SBMA and to distinguish gain- from loss-of-function properties of mutant AR in disease motor neurons.
View Article and Find Full Text PDFThe current review systematically documents the role of gamma-amino-butyric acid (GABA) in different aspects of fear memory-acquisition and consolidation, reconsolidation, and extinction, and attempts to resolve apparent contradictions in the data in order to identify the function of GABA(A) receptors in fear memory. First, numerous studies have shown that pre- and post-training administration of drugs that facilitate GABAergic transmission disrupt the initial formation of fear memories, indicating a role for GABA(A) receptors, possibly within the amygdala and hippocampus, in the acquisition and consolidation of fear memories. Similarly, recent evidence indicates that these drugs are also detrimental to the restorage of fear memories after their reactivation.
View Article and Find Full Text PDF