Background: Substantial evidence indicates that cytophilic IgG responses to Plasmodium falciparum merozoite antigens play a role in protection from malaria. The specific targets mediating immunity remain unclear. Evaluating antibody responses in infants naturally-exposed to malaria will allow to better understand the establishment of anti-malarial immunity and to contribute to a vaccine development by identifying the most appropriate merozoite candidate antigens.
View Article and Find Full Text PDFExtensive polymorphism in the genes encoding for surface antigens of Plasmodium falciparum and Plasmodium vivax has been a serious impediment for malaria vaccine development. One such antigen is the merozoite surface protein-1 (MSP-1). The MSP-1 precursor after proteolytic cleavage generates a C-terminal fragment of 42 kDa (MSP-1(42)), which subsequently produces 33 kDa (MSP-1(33)) and 19 kDa (MSP-1(19)) fragments.
View Article and Find Full Text PDFBackground: Effective vaccines to combat malaria are urgently needed, but have proved elusive in the absence of validated correlates of natural immunity. Repeated blood stage infections induce antibodies considered to be the main arbiters of protection from pathology, but their essential functions have remained speculative.
Methodology/principal Findings: This study evaluated antibody dependent respiratory burst (ADRB) activity in polymorphonuclear neutrophils (PMN) induced by Plasmodium falciparum merozoites and antibodies in the sera of two different African endemic populations, and investigated its association with naturally acquired clinical protection.
A number of laboratories around the world are producing Plasmodium falciparum erythrocyte-stage vaccine candidates in the pursuit of a vaccine against clinical malaria disease. These candidates are often based on the same parasite protein. Rigorous clinical development and testing of multiple candidates is limited by available resources, which underscores the need to conduct comparative studies of the different vaccine candidates.
View Article and Find Full Text PDFImmunogenicity testing of Plasmodium falciparum antigens being considered as malaria vaccine candidates was undertaken in rabbits. The antigens compared were recombinant baculovirus MSP-1(19) and five Pichia pastoris candidates, including two versions of MSP-1(19), AMA-1 (domains I and II), AMA-1+MSP-1(19), and fused AMA-1/MSP-1(19)). Animals were immunized with equimolar amounts of each antigen, formulated in Montanide ISA720.
View Article and Find Full Text PDFThe Plasmodium MSP-1 is a promising malaria vaccine candidate. However, the highly polymorphic nature of the MSP-1 gene (msp1) presents a potential obstacle for effective vaccine development. To investigate the evolutionary history of msp1 polymorphism in P.
View Article and Find Full Text PDFWe report here, for the first time, a comparison of naturally acquired antibody responses to the 42 and 19 kDa C-terminal processing products of Plasmodium vivax Merozoite Surface Protein-1 assayed by ELISA using p42 and p19 baculovirus-derived recombinant proteins, respectively. Test populations comprised patients with microscopy confirmed acute P. vivax infections from two regions endemic for vivax malaria where low transmission and unstable malaria conditions prevail, and a non-endemic urban area, in Sri Lanka.
View Article and Find Full Text PDFRecombinant homologues of the Plasmodium merozoite surface protein 1 C-terminus are leading blood stage malaria vaccine candidates. MSP1 is anchored to the merozoite plasma membrane in vivo by a glycosyl-phosphatidyl-inositol (GPI) moiety, implicated in malaria pathology. Two types of recombinant Plasmodium falciparum MSP1p19 (PfMSP1p19) expressed in baculovirus/insect cells are described here: (1) a soluble, secreted form (PfMSP1p19S) and (2) detergent soluble cellular form(s) (PfMSP1p19+A), released from the infected cell surface by treatment with GPI specific phosphatidyl-inositol phospholipase C (PI-PLC).
View Article and Find Full Text PDFAntibodies to polymorphic block 2 of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) present a paradoxical association with acquired protection against clinical malaria, while showing restricted and fixed specificity, reminiscent of antigenic sin. We report here that these antibodies present a highly imbalanced, peptide-specific light chain distribution. This was not observed with several other parasite-derived peptides or antigens.
View Article and Find Full Text PDFGlycosylphosphatidylinositol (GPI) membrane anchors of Plasmodium falciparum surface proteins are thought to be important factors contributing to malaria pathogenesis, and anti-GPI antibodies have been suggested to provide protection by neutralizing the toxic activity of GPIs. In this study, IgG responses against P. falciparum GPIs and a baculovirus recombinant MSP1p19 antigen were evaluated in two distinct groups of 70 patients each, who were hospitalized with malaria.
View Article and Find Full Text PDFAntibodies to Plasmodium falciparum C-terminal merozoite surface protein 1 (PfMSP-1p19) have been correlated with protection against malaria, but this association may apply to many merozoite antigens. To address this question, we conducted a prospective serological study of 205 individuals in an active 5-month clinical survey in a Senegalese village where malaria is mesoendemic. Before the 2000 rainy season, antibody responses specific for recombinant baculovirus PfMSP-1p19 or merozoite extracts were compared with 2 in vitro functional antibody activities (inhibition of parasite grown and erythrocyte invasion) and with the number of clinical episodes during 5 months of follow-up.
View Article and Find Full Text PDFCytophilic antibodies (Abs) play a critical role in protection against Plasmodium falciparum blood stages, yet little is known about the parameters regulating production of these Abs. We used an in vitro culture system to study the subclass distribution of antigen (Ag)-specific immunoglobulin G (IgG) produced by peripheral blood mononuclear cells (PBMCs) from individuals exposed to P. falciparum or unexposed individuals.
View Article and Find Full Text PDF