Publications by authors named "Shirley Clark"

Green stormwater infrastructure (GSI) is adopted to reduce the impact of stormwater on urban flooding and water quality issues. This study assessed the performance of GSI, like bioretention basins, in accumulating metals. Twenty one GSI basins were considered for this study, which were located in New York and Pennsylvania, USA.

View Article and Find Full Text PDF

During the COVID-19 pandemic, wastewater surveillance was leveraged as a powerful tool for monitoring community-scale health. Further, the well-known persistence of some pharmaceuticals through wastewater treatment plants spurred concerns that increased usage of pharmaceuticals during the pandemic would increase the concentrations in wastewater treatment plant effluent. We collected weekly influent and effluent samples from May 2020 through May 2021 from two wastewater treatment plants in central Pennsylvania, the Penn State Water Reclamation Facility and the University Area Joint Authority, that provide effluent for beneficial reuse, including for irrigation.

View Article and Find Full Text PDF

Flat panel display glass (FPDG) from plasma televisions is difficult to recycle due to their heavy metal composition. When crushed, flat panel display glass has similar physical properties to sand and could be used as a recycled aggregate in concrete, if the potentially harmful metals in FPDG can be encapsulated. To replicate leaching from environmental exposure, at periodic points during freeze-thaw tests, samples of concrete with 0%, 10%, and 20% FPDG were exposed to simulated rainwater and the runoff water was analyzed.

View Article and Find Full Text PDF

The design and performance of stormwater controls is affected by the treatment flow rates of bioretention media. This article presents the results of a large number of laboratory column tests conducted to examine the treatment flow rates for various mixtures of stormwater bioretention media. Statistical analyses were conducted to identify the treatment media having targeted treatment flow rates.

View Article and Find Full Text PDF

The Sensititre MycoTB plate (TREK Diagnostic Systems, Cleveland, OH) uses a microtiter plate MIC format for susceptibility testing of Mycobacterium tuberculosis complex isolates against first- and second-line antituberculosis agents. Categorical agreement versus the agar proportion method for 122 M. tuberculosis complex isolates was 94% to 100%.

View Article and Find Full Text PDF

Stormwater treatment is entering a new phase with stormwater management systems being required to meet specific numeric objectives, as opposed to the historic approach of meeting guidance-document-provided percent removal rates. Meeting numeric discharge requirements will require designers to better understand and apply the physical, chemical, and biological processes underpinning these treatment technologies. This critical review paper focuses on the potential unit treatment operations available for stormwater treatment and outlines how to identify the most applicable treatment options based on the needed pollutant removal goals.

View Article and Find Full Text PDF

The rapid detection of antimicrobial resistance is important in the effort to control the increase in resistant Mycobacterium tuberculosis (Mtb). Antimicrobial susceptibility testing (AST) of Mtb has traditionally been performed by the agar method of proportion or by macrobroth testing on an instrument such as the BACTEC (Becton Dickinson, Sparks, MD), VersaTREK (TREK Diagnostics, Cleveland, OH) or BacT/ALERT (bioMérieux, Hazelwood, MO). The agar proportion method, while considered the "gold" standard of AST, is labor intensive and requires calculation of resistance by performing colony counts on drug-containing agar as compared to drug-free agar.

View Article and Find Full Text PDF

Regulatory agencies approve automatic samplers containing peristaltic pumps as a sample collection method for stormwater characterization and for treatment-device evaluation. Autosampler performance, as discussed in the limited available literature, can vary across the entire particle size range typically found in stormwater from different source areas and outfalls-reasonably consistent performance for particle sizes < 250 microm, but much less consistency for particles > 250 microm. Therefore, a series of experiments was undertaken to quantify the upper range of consistent particle capture that may occur with sampling stormwater suspended sediment and particulate-bound pollutants.

View Article and Find Full Text PDF

Stormwater suspended solids typically are quantified using one of two methods: aliquot/subsample analysis (total suspended solids [TSS]) or whole-sample analysis (suspended solids concentration [SSC]). Interproject comparisons are difficult because of inconsistencies in the methods and in their application. To address this concern, the suspended solids content has been measured using both methodologies in many current projects, but the question remains about how to compare these values with historical water-quality data where the analytical methodology is unknown.

View Article and Find Full Text PDF

To offset the detrimental effects of urbanization on groundwater recharge, stormwater managers are focusing on infiltrating much of the runoff from a site that was generated because of development. For this to be effective, tools are required to predict the potential for contamination resulting from this infiltration for many site conditions, because infiltration should be stressed in areas where the least potential for causing groundwater contamination exists. Factors that influence contamination potential include the pollutant concentration in the runoff directed to the infiltration device and the ability of the underlying soil to remove the pollutant.

View Article and Find Full Text PDF