Background: Ubiquitin-specific peptidases (USPs), also known as deubiquitinating enzymes (DUBs), play a crucial role in maintaining cellular homeostasis by selectively removing ubiquitin molecules from targeted proteins. This process affects protein stability, subcellular localization, and activity, thereby influencing processes such as DNA repair, cell cycle regulation, and apoptosis. Abnormal USP activities have been linked to various diseases, including cancer.
View Article and Find Full Text PDFIn this study, the intravitreal pharmacokinetics of nanomaterials were investigated in vivo in rats and rabbits. Impact of particle size and shape (spherical, longitudinal) on ocular particle distribution and elimination was investigated with fundus camera, optical coherence tomography and ocular fluorophotometry. Differently sized particles showed prolonged ocular retention and remarkable differences in vitreal elimination, but size dependence was consistent, suggesting that other features have influence on their vitreal kinetics.
View Article and Find Full Text PDFChoroidal neovascularization (CNV) is a prevalent vision-threatening vascular disorder in aging population. CNV is associated with several diseases in the posterior segment of the eye such as age-related macular degeneration (AMD). In this study we developed sunitinib-loaded liposomes to block the neovascularization signalling pathway through inhibition of tyrosine kinase of vascular endothelial growth factor receptors (VEGFRs).
View Article and Find Full Text PDFThe treatment of retinal diseases by intravitreal injections requires frequent administration unless drug delivery systems with long retention and controlled release are used. In this work, we focused on pullulan (≈67 kDa) conjugates of dexamethasone as therapeutic systems for intravitreal administration. The pullulan-dexamethasone conjugates self-assemble into negatively charged nanoparticles (average size 326 ± 29 nm).
View Article and Find Full Text PDFPosterior eye tissues, such as retina, are affected in many serious eye diseases, but drug delivery to these targets is challenging due to various anatomical eye barriers. Intravitreal injections are widely used, but the intervals between invasive injections should be prolonged. We synthesized and characterized (H NMR, gel permeation chromatography) block copolymers of poly(ethylene glycol), poly(caprolactone), and trimethylene carbonate.
View Article and Find Full Text PDFDrug delivery to the posterior segment of the eye is challenging due to several anatomical and physiological barriers. Thus, there is a need for prolonged action and targeted drug delivery to treat retinal diseases. Intravitreal injections avoid anterior eye barriers, but the vitreoretinal interface and inner limiting membrane (ILM) may prevent access of drug delivery systems to the retina.
View Article and Find Full Text PDFLight-activated liposomes permit site and time-specific drug delivery to ocular and systemic targets. We combined a light activation technology based on indocyanine green with a hyaluronic acid (HA) coating by synthesizing HA-lipid conjugates. HA is an endogenous vitreal polysaccharide and a potential targeting moiety to cluster of differentiation 44 (CD44)-expressing cells.
View Article and Find Full Text PDFThe vitreous humor is the first barrier encountered by intravitreally injected nanoparticles. Lipid-based nanoparticles in the vitreous are studied by evaluating their diffusion with single-particle tracking technology and by characterizing their protein coronae with surface plasmon resonance and high-resolution proteomics. Single-particle tracking results indicate that the vitreal mobility of the formulations is dependent on their charge.
View Article and Find Full Text PDFNanoparticle morphology (size, shape, and composition) and surface chemistry are the determining factors underpinning the efficacy of such materials in therapeutic applications. The size, shape, and surface chemistry of a nanoparticle can strongly influence key properties such as interactions with diverse biological fluids and interfaces and, in turn, impact the delivery of bioactive cargo, modulating therapeutic performance. This is exemplified in ocular drug delivery, where potential therapeutics must navigate complex biological media such as the gel-like vitreal fluid and the retina.
View Article and Find Full Text PDFWe present a case of focal cerebral arteriopathy and ischemic stroke in a pediatric patient with coronavirus disease 2019 who presented with seizure, right hemiparesis, and dysarthria with positive findings for severe acute respiratory syndrome coronavirus 2 from nasopharyngeal swab and cerebral spinal fluid.
View Article and Find Full Text PDFIn recent decades, mesenchymal stromal cells (MSCs) biomedical utilizing has attracted worldwide growing attention. After the first report of the human MSCs obtaining from the bone marrow (BM) tissue, these cells were isolated from wide types of the other tissues, ranging from adipose tissue to dental pulp. Their specific characteristics, comprising self-renewality, multipotency, and availability accompanied by their immunomodulatory properties and little ethical concern denote their importance in the context of regenerative medicine.
View Article and Find Full Text PDFTwo iridium [Ir(N^C)(N^N)] complexes with the diimine N^N ligand containing a long polymethylene hydrophobic chain were synthesized and characterized by using NMR and ESI mass-spectrometry: N^N - 2-(1-hexadecyl-1-imidazol-2-yl)pyridine, N^C - methyl-2-phenylquinoline-4-carboxylate (Ir1) and 2-phenylquinoline-4-carboxylic acid (Ir2). These complexes were used to prepare the luminescent PEGylated DPPC liposomes (DPPC/DSPE-PEG2000/Ir-complex = 95/4.5/1 mol%) using a thin film hydration method.
View Article and Find Full Text PDFBackground: Green synthesis of silver nanoparticles (AgNPs) is limited to produce AgNPs with only relatively low concentrations, and is unsuitable for large-scale productions. The use of Myrtus communis (MC) leaf methanolic extract (rich in hydrolyzable tannins) has been recommended to resolve the issues related to the aggregation of nanoparticles at high concentrations of silver ions with added facet of antioxidant properties.
Methods: The produced highly concentrated MC-AgNPs were characterized by using imaging and spectroscopic methods.
Nucleic acid delivery to the eye is a promising treatment strategy for many retinal disorders. In this manuscript, retinal gene delivery with non-coated and chondroitin sulphate (CS) coated amphipathic and cationic peptides was tested. The transfection and gene knockdown efficiencies were evaluated in different retinal pigment epithelial (RPE) cell models including both dividing and differentiated cells.
View Article and Find Full Text PDFSorafenib (SFB) is an FDA-approved chemotherapeutic agent with a high partition coefficient (log P = 4.34) for monotherapy of hepatocellular carcinoma (HCC). The oral bioavailability is low and variable, so it was aimed to study the application of the polymeric nanoassembly of cholesterol conjugates of branched polyethyleneimine (PEI) for micellar solubilization of SFB and to investigate the impact of the polymer PEGylation on the physicochemical and cellular characteristics of the lipopolymeric dispersions.
View Article and Find Full Text PDFStealth liposomes encapsulating oligonucleotides are considered as promising non-viral gene delivery carriers; however, general preparation procedures are not capable to encapsulate nucleic acids (NAs) efficiently. In this study, the lyophobic complexes of deoxythymidine20 oligonucleotide (dT20) and DOTAP were used instead of free dT20 for nano-encapsulation process by reverse phase evaporation method. Regarding the various factors that can potentially affect the liposome characteristics, Taguchi design was applied to analyze the simultaneous effects of factors comprising PEG-lipid (%), dT20/total lipid molar ratio, cholesterol (Chol%) and organic-to-aqueous phase ratio (o/w) at three levels.
View Article and Find Full Text PDF