Publications by authors named "Shirin Pourashraf"

We have evaluated CTR performance of four different mixed-signal front-end electronic readout configurations with the goal to achieve 100 picoseconds (ps) coincidence time resolution (CTR). The proposed TOF-PET detector elements are based on two 3 × 3 × 10 mm "fast LGSO" crystal segments, side-coupled to linear arrays of 3 × 3 mm silicon photomultipliers (SiPMs), to form a total crystal length of 20 mm. We studied multiple configurations and components for the front-end readout: 1) high speed radio frequency (RF) amplifiers; 2) an ASIC-based discriminator; 3) combination of RF amplifier, balun transformer, and discriminator ASIC; and 4) combination of balun transformer, and discriminator ASIC.

View Article and Find Full Text PDF

Positron Emission Tomography (PET) reconstructed image signal-to-noise ratio (SNR) can be improved by including the 511 keV photon pair coincidence time-of-flight (TOF) information. The degree of SNR improvement from this TOF capability depends on the coincidence time resolution (CTR) of the PET system, which is essentially the variation in photon arrival time differences over all coincident photon pairs detected for a point positron source placed at the system center. The CTR is determined by several factors including the intrinsic properties of the scintillation crystals and photodetectors, crystal-to-photodetector coupling configurations, reflective materials, and the electronic readout configuration scheme.

View Article and Find Full Text PDF

We have developed a scalable detector readout design for a 100 ps coincidence time resolution (CTR) time of flight (TOF) positron emission tomography (PET) detector technology. The basic scintillation detectors studied in this paper are based on 2 × 4 arrays of 3 × 3 × 10 mm'fast-LGSO:Ce' scintillation crystals side-coupled to 6 × 4 arrays of 3 × 3 mmsilicon photomultipliers (SiPMs). We employed a novel mixed-signal front-end electronic configuration and a low timing jitter Field Programming Gate Array-based time to digital converter for data acquisition.

View Article and Find Full Text PDF