Publications by authors named "Shirin Kazemi"

Background: Checkpoint blockade with ipilimumab provides long-term survival to a significant proportion of patients with metastatic melanoma. New approaches to increase survival and to predict which patients will benefit from treatment are needed. This phase II trial combined ipilimumab with carboplatin/paclitaxel (CP) to assess its safety, efficacy, and to search for peripheral and tumor-based predictive biomarkers.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER)-resident protein kinase PERK attenuates protein synthesis in response to ER stress through the phosphorylation of translation initiation factor eIF2alpha at serine 51. ER stress induces PERK autophosphorylation at several serine/threonine residues, a process that is required for kinase activation and phosphorylation of eIF2alpha. Herein, we demonstrate that PERK also possesses tyrosine kinase activity.

View Article and Find Full Text PDF

Phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) is mediated by a family of kinases that respond to various forms of environmental stress. The eIF2alpha kinases are critical for mRNA translation, cell proliferation, and apoptosis. Activation of the tumor suppressor p53 results in cell cycle arrest and apoptosis in response to various types of stress.

View Article and Find Full Text PDF

Phosphoinositide-3 kinase (PI3K) plays an important role in signal transduction in response to a wide range of cellular stimuli involved in cellular processes that promote cell proliferation and survival. Phosphorylation of the alpha subunit of the eukaryotic translation initiation factor eIF2 at Ser51 takes place in response to various types of environmental stress and is essential for regulation of translation initiation. Herein, we show that a conditionally active form of the eIF2alpha kinase PKR acts upstream of PI3K and turns on the Akt/PKB-FRAP/mTOR pathway leading to S6 and 4E-BP1 phosphorylation.

View Article and Find Full Text PDF

A cornerstone of the antiviral interferon response is phosphorylation of eukaryotic initiation factor (eIF)2alpha. This limits the availability of eIF2.GTP.

View Article and Find Full Text PDF

Tyrosine phosphorylation of the transcription factors Stat1 and Stat3 is required for them to dimerize, translocate to the nucleus, and induce gene transcription. Nuclear Stat1 and Stat3 are dephosphorylated and deactivated by the T-cell protein-tyrosine phosphatase (TC-PTP), which facilitates the return of both proteins to the cytoplasm. The protein kinase PKR plays an important role in translational control through the modulation of eukaryotic initiation factor-2alpha phosphorylation.

View Article and Find Full Text PDF

Human papillomaviruses (HPVs) are aetiological agents for genital warts and cervical cancer, the different pathologies of which are dependent on the type of HPV infection. Oncogenic HPV types associated with cancer are carcinogens by virtue of their oncogene products, which target key regulators of cell proliferation and apoptosis. The viral E6 protein from oncogenic HPV types plays a central role in carcinogenesis by exploiting the cellular proteasome degradation pathway in order to mediate the degradation of cellular proteins, most notably the prototype tumour suppressor protein p53.

View Article and Find Full Text PDF

Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) at serine 51 inhibits protein synthesis in cells subjected to various forms of stress including virus infection. The human papillomavirus (HPV) E6 oncoprotein contributes to virus-induced pathogenicity through multiple mechanisms including the inhibition of apoptosis and the blockade of interferon (IFN) action. We have investigated a possible functional relationship between the E6 oncoprotein and eIF2alpha phosphorylation by an inducible-dimerization form of the IFN-inducible protein kinase PKR.

View Article and Find Full Text PDF