Objectives: 1) Identify processes limiting the arrival of itraconazole at the intestinal epithelium when Sporanox® amorphous solid dispersion (ASD) pellets are transferred from the stomach through the upper small intestine, after a high-calorie, high-fat meal. 2) Evaluate whether itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine are useful for the assessment of dose effects in the fed state and food effects on plasma levels.
Methods: Itraconazole concentrations, apparent viscosity, and solubilization capacity were measured in aspirates from the upper gastrointestinal lumen collected during a recently performed clinical study in healthy adults.
Information on the conditions under which drugs are transferred from the stomach through the upper small intestine after a high-calorie, high-fat meal is very limited. To simulate the drug presence after disintegration and arrival in the antral region, paracetamol solution and Sporanox® amorphous solid dispersion pellets at two dose levels were administered to the antrum of 8 healthy adults 30 min after administration of a high-calorie, high-fat meal on a crossover basis. The overall median buffer capacity of antral contents was estimated to be 18.
View Article and Find Full Text PDFDue to the strong tendency towards poorly soluble drugs in modern development pipelines, enabling drug formulations such as amorphous solid dispersions, cyclodextrins, co-crystals and lipid-based formulations are frequently applied to solubilize or generate supersaturation in gastrointestinal fluids, thus enhancing oral drug absorption. Although many innovative in vitro and in silico tools have been introduced in recent years to aid development of enabling formulations, significant knowledge gaps still exist with respect to how best to implement them. As a result, the development strategy for enabling formulations varies considerably within the industry and many elements of empiricism remain.
View Article and Find Full Text PDF