Understanding the production and differentiation of megakaryocytes from progenitors is crucial for realizing the biology and functions of these vital cells. Previous gene ablation studies demonstrated the essential role of the transcriptional repressor Gfi1b (growth factor independence 1b) in the generation of both erythroid and megakaryocytic cells. However, our recent work has demonstrated the down-regulation of this factor during megakaryocytic differentiation.
View Article and Find Full Text PDFAppropriate diversification of cellular lineages from multi-potent progenitors is essential for normal development and homeostasis. The specification of erythroid and megakaryocytic lineages represents an especially vital developmental event whose molecular regulation remains incompletely defined. We now demonstrate the role of Rgs18, a GTPase-activating protein and transcriptional target of the repressor Gfi1b, in regulating these processes in mouse and human cells.
View Article and Find Full Text PDFLysine-specific demethylase 1 (LSD1) demethylates nucleosomal histone H3 lysine 4 (H3K4) residues in collaboration with the corepressor CoREST/REST corepressor 1 (Rcor1) and regulates cell fates by epigenetically repressing gene targets. The balanced regulation of this demethylase, if any, is however unknown. We now demonstrate the actions of two other Rcor paralogs, Rcor2 and Rcor3, in regulating LSD1 enzymatic activity and biological function in hematopoietic cells.
View Article and Find Full Text PDFA fundamental question in hematopoietic development is how multipotent progenitors achieve precise identities, while the progenitors themselves maintain quiescence. In Drosophila melanogaster larvae, multipotent hematopoietic progenitors support the production of three lineages, exhibit quiescence in response to cues from a niche, and from their differentiated progeny. Infection by parasitic wasps alters the course of hematopoiesis.
View Article and Find Full Text PDFGfi1b (growth factor independence 1b) is a zinc finger transcription factor essential for development of the erythroid and megakaryocytic lineages. To elucidate the mechanism underlying Gfi1b function, potential downstream transcriptional targets were identified by chromatin immunoprecipitation and expression profiling approaches. The combination of these approaches revealed the oncogene meis1, which encodes a homeobox protein, as a direct and prominent target of Gfi1b.
View Article and Find Full Text PDFGfi-1 and Gfi-1b are homologous transcriptional repressors involved in diverse developmental contexts, including hematopoiesis and oncogenesis. Transcriptional repression by Gfi proteins requires the conserved SNAG domain. To elucidate the function of Gfi proteins, we purified Gfi-1b complexes and identified interacting proteins.
View Article and Find Full Text PDFWe have previously observed that replication and nuclear location of the murine Igh locus are developmentally regulated during B cell differentiation. In non-B, B, and plasma cells, sequences near the 3' end of the Igh locus replicate early in S while upstream Vh sequences replicate late in S, and the Igh locus is located near the nuclear periphery. In fact, in MEL non-B cells, replication of a 500-kb segment containing Igh-C and flanking sequences occurs progressively later throughout S by 3' to 5' unidirectional fork movement.
View Article and Find Full Text PDFHaematopoietic stem cells (HSCs) sustain blood production throughout life. HSCs are capable of extensive proliferative expansion, as a single HSC may reconstitute lethally irradiated hosts. In steady-state, HSCs remain largely quiescent and self-renew at a constant low rate, forestalling their exhaustion during adult life.
View Article and Find Full Text PDFThe 3' Igh enhancers, DNase I hypersensitive site (hs) 3B and/or hs4, are required for germline transcription, and hence, class switch recombination for multiple isotypes. A number of hs3-binding transcription factors have been identified by EMSA, including octamer and NF-kappa B family members, and Pax5. We have found that the binding of the transcription factor, Yin Yang 1 (YY1), to hs3 and to the mu E1 site of the intronic enhancer, E mu, is induced in primary splenic B cells after approximately 48 h in response to LPS and other activators of class switch recombination.
View Article and Find Full Text PDFGfi-1 and Gfi-1b are novel proto-oncogenes identified by retroviral insertional mutagenesis. By gene targeting, we establish that Gfi-1b is required for the development of two related blood lineages, erythroid and megakaryocytic, in mice. Gfi-1b(-/-) embryonic stem cells fail to contribute to red cells of adult chimeras.
View Article and Find Full Text PDF