Publications by authors named "Shirao T"

Article Synopsis
  • * In this study, researchers developed neural progenitor cells from human-induced pluripotent stem cells and tested their effects on stroke recovery in rats by transplanting these cells into the brain after inducing an ischemic stroke.
  • * The transplanted cells showed some potential for differentiation into neurons and improvement in neurological function, especially when given in the subacute phase, but overall effects were modest and further refinements in the transplantation process are needed for better results.
View Article and Find Full Text PDF

Introduction: Olfactory deficit often occurs during the prodromal stage of Alzheimer's disease (AD). Although olfactory deficit is a useful measure for screening AD-related amnestic disorder, little is known about the cause of this deficit. Human and animal studies indicate that loss of the actin binding protein, drebrin, is closely related to cognitive dysfunction in AD.

View Article and Find Full Text PDF

Dendritic spines are unique postsynaptic structures that emerge from the dendrites of neurons. They undergo activity-dependent morphological changes known as structural plasticity. The changes involve actin cytoskeletal remodeling, which is regulated by actin-binding proteins.

View Article and Find Full Text PDF

Methotrexate (MTX) is an anti-metabolite that has been used for the treatment of patients of acute lymphocytic leukemia or non-Hodgikin lymphoma for decades. In some cases, MTX-treated patients suffer from neurological side effects, including seizures and cognitive dysfunctions. While most patients are at developmental stages, information of the mechanisms of the side effects of MTX treatment on the developing neurons has been limited.

View Article and Find Full Text PDF

Neuronal culture is a valuable system for evaluating synaptic functions and drug screenings. In particular, a low-density culture of primary hippocampal neurons allows the study of individual neurons or subcellular components. We have shown subcellular protein localization within a neuron by immunocytochemistry, neuronal polarity, synaptic morphology, and its developmental change using a low-density primary hippocampal culture.

View Article and Find Full Text PDF

Morphologically dynamic dendritic spines are the major sites of neuronal plasticity in the brain; however, the molecular mechanisms underlying their morphological dynamics have not been fully elucidated. Phldb2 is a protein that contains two predicted coiled-coil domains and the pleckstrin homology domain, whose binding is highly sensitive to PIP. We have previously demonstrated that Phldb2 regulates synaptic plasticity, glutamate receptor trafficking, and PSD-95 turnover.

View Article and Find Full Text PDF

The primary cilium is a specialized microtubule-based sensory organelle that extends from the cell body of nearly all cell types. Neuronal primary cilia, which have their own unique signaling repertoire, are crucial for neuronal integrity and the maintenance of neuronal connectivity throughout adulthood. Dysfunction of cilia structure and ciliary signaling is associated with a variety of genetic syndromes, termed ciliopathies.

View Article and Find Full Text PDF
Article Synopsis
  • * After 49 days of in vitro differentiation, hiPSC-neurons exhibited some pre- and postsynaptic markers, but postsynaptic marker expression was significantly lower than in normal human or rat brain tissues.
  • * Findings suggest that forming presynaptic structures alone is not enough for mature postsynaptic structure development, indicating a complex relationship between synaptic marker expression and functional synapse formation in hiPSC-neurons.
View Article and Find Full Text PDF

The primary cilium is a plasma membrane-protruding sensory organelle that efficiently conveys signaling cascades in a highly ordered microenvironment. Its signaling is mediated, in part, by a limited set of GPCRs preferentially enriched in the cilium membrane. This includes melanin-concentrating hormone (MCH) receptor 1 (MCHR1), which plays a role in feeding and mood.

View Article and Find Full Text PDF

Effective drugs that can cure cognitive impairments remain elusive. Because synaptic dysfunction has been correlated with cognitive impairments, drug development to target synaptic dysfunction is important. Recently, natural compounds and crude drugs have emerged as potential therapeutic agents for cognitive disorders.

View Article and Find Full Text PDF

Dysregulation of the serotonergic system has been reported to have a significant role in several neurological disorders including depression, autism and substance abuse disorders. Changes in the expression of the serotonin transporter (SERT) through polymorphisms in the regulatory regions of the SERT gene have been associated, but not yet been conclusively linked to, neuropsychiatric disorders. In turn, dendritic spine structure and function are critical for neuronal function and the disruption of dendritic spine formation at glutamatergic synapses is a hallmark of several neuropsychiatric disorders.

View Article and Find Full Text PDF

Soybean isoflavones, such as genistein, daidzein, and its metabolite, S-equol, are widely known as phytoestrogens. Their biological actions are thought to be exerted the estrogen signal transduction pathway. Estrogens, such as 17β-estradiol (E2), play a crucial role in the development and functional maintenance of the central nervous system.

View Article and Find Full Text PDF

Abnormal metabotropic glutamate receptor (mGluR) activity could cause brain disorders; however, its regulation has not yet been fully understood. Here, we report that protein kinase N1 (PKN1), a protein kinase expressed predominantly in neurons in the brain, normalizes group 1 mGluR function by upregulating a neuronal glutamate transporter, excitatory amino acid transporter 3 (EAAT3), and supports silent synapse activation. Knocking out PKN1a, the dominant PKN1 subtype in the brain, unmasked abnormal input-nonspecific mGluR-dependent long-term depression (mGluR-LTD) and AMPA receptor (AMPAR) silencing in the developing hippocampus.

View Article and Find Full Text PDF

The primary cilium is a solitary organelle that organizes a sensitive signaling hub in a highly ordered microenvironment. Cilia are plastic structures, changing their length in response to bioactive substances, and ciliary length may be regulated to ensure efficient signaling capacity. Mammalian brain neurons possess primary cilia that are enriched in a set of G protein-coupled receptors (GPCRs), including the feeding-related melanin-concentrating hormone (MCH) receptor 1 (MCHR1).

View Article and Find Full Text PDF

The stability of optical beats in a chaotically oscillating laser is compared to that of a free-running continuous-wave laser using a highly efficient plasmonic photomixer. Using a chaotically oscillating laser diode, stable optical beats are observed over an operation current range of 60-90 mA. The optical spectra are stable even with frequent mode hopping.

View Article and Find Full Text PDF

Objective: Drebrins are crucial for synaptic function and dendritic spine development, remodeling, and maintenance. In temporal lobe epilepsy (TLE) patients, a significant hippocampal synaptic reorganization occurs, and synaptic reorganization has been associated with hippocampal hyperexcitability. This study aimed to evaluate, in TLE patients, the hippocampal expression of drebrin using immunohistochemistry with DAS2 or M2F6 antibodies that recognize adult (drebrin A) or adult and embryonic (pan-drebrin) isoforms, respectively.

View Article and Find Full Text PDF

The effects of X-irradiation on developing neurons and their functions are unclear. We used primary cultures of mouse hippocampal neurons to investigate the effects of X-irradiation on cell death in developing neurons by analyzing caspase-3, MAP2 and DAPI-labeled cells, and the phenotypes and function of surviving neurons, by examining GAD67-positive cells as a GABAergic marker, and the synaptic markers synapsin 1, drebrin and PSD-95 through its maturation. One-day in vitro (DIV 1) cells were exposed to 0.

View Article and Find Full Text PDF

Introduction: Detection of drug effects on neuronal synapses is important for predicting their adverse effects. We have used drebrin as a marker to detect the synaptic changes in cultured neurons. High concentration of glutamate decreases the amount of drebrin in synapses.

View Article and Find Full Text PDF

Introduction: In recent years, new psychoactive substances (NPS) have been widely distributed for abuse purposes. Effective measures to counter the spread of NPS are to promptly legislate them through the risk assessment. Phencyclidine analogues having inhibitory effects toward NMDA receptor (NMDAR) have recently emerged in Japan.

View Article and Find Full Text PDF

Recent advances in human induced pluripotent stem cells (hiPSCs) offer new possibilities for biomedical research and clinical applications. Neurons differentiated from hiPSCs may be promising tools to develop novel treatment methods for various neurological diseases. However, the detailed process underlying functional maturation of hiPSC-derived neurons remains poorly understood.

View Article and Find Full Text PDF

Cognitive impairment is a core feature of schizophrenia (SCH). In addition to the toxic effect of Bilirubin (BIL), it has antioxidant properties that were associated with the psychopathology and cognitive impairment of psychiatric disorders. The aim of this study was to examine the correlation of serum total BIL (TBIL) concentration with cognitive impairment in SCH patients.

View Article and Find Full Text PDF

Drebrin is an actin-binding protein that is preferentially expressed in the brain. It is highly localized in dendritic spines and regulates spine shapes. The embryonic-type (drebrin E) is expressed in the embryonic and early postnatal brain and is replaced by the adult-type (drebrin A) during development.

View Article and Find Full Text PDF

Scope: The prevalence of type 2 diabetes mellitus (T2DM) is increasing yearly worldwide. Glycemic control is the basis for the treatment of T2DM, as it can prevent the progress of associated complications. Spices possess various health beneficial effects on humans.

View Article and Find Full Text PDF

Drebrin is a major F-actin binding protein in dendritic spines that is critically involved in the regulation of dendritic spine morphogenesis, pathology, and plasticity. In this study, we aimed to identify a novel drebrin-binding protein involved in spine morphogenesis and synaptic plasticity. We confirmed the beta subunit of Ca /calmodulin-dependent protein kinase II (CaMKIIβ) as a drebrin-binding protein using a yeast two-hybrid system, and investigated the drebrin-CaMKIIβ relationship in dendritic spines using rat hippocampal neurons.

View Article and Find Full Text PDF

Dendritic spines have stable filamentous actin (F-actin) and dynamic F-actin. The formation of stable F-actin plays a pivotal role in spine formation. Drebrin binds to and stabilizes F-actin in dendritic spines.

View Article and Find Full Text PDF