Publications by authors named "Shirae K Leslie"

Growth factors produced by stem cells aid in the bone repair process. We investigated the ability of encapsulated rat adipose-derived stem cells (rASCs) treated with osteogenic media (OM) to produce growth factors, and determined the optimal combination of OM components that will lead to the production of both osteogenic and angiogenic factors. Our results demonstrate that microencapsulated stem cells were able to produce vascular endothelial growth factor (VEGF), fibroblast growth factor-2, and bone morphogenetic protein-2 (BMP2) necessary for bone regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • Cell-based tissue engineering using alginate microbeads with adipose stem cells (ASCs) shows promise in regenerating cartilage, especially in difficult areas like ear defects in rabbits.
  • The study found that microbeads containing stem cells led to partial cartilage regeneration, while microbeads without cells or empty defects resulted in less favorable tissue repair outcomes.
  • Important factors, such as blood vessel growth and elastin induction, need to be addressed for effective regeneration of functional auricular cartilage using this delivery system.
View Article and Find Full Text PDF

An increasing demand to regenerate tissues from patient-derived sources has led to the development of cell-based therapies using autologous stem cells, thereby decreasing immune rejection of scaffolds coupled with allogeneic stem cells or allografts. Adult stem cells are multipotent and are readily available in tissues such as fat and bone marrow. They possess the ability to repair and regenerate tissue through the production of therapeutic factors, particularly vasculogenic proteins.

View Article and Find Full Text PDF

Alginate microbeads incorporating adipose-derived stem cells (ASCs) have potential for delivering viable cells capable of facilitating tissue regeneration. These microbeads are formed in calcium crosslinking solutions containing organic osmolytes to ensure physiological osmolality, but the comparative effects of these osmolytes on the microencapsulated cells are not known. In addition, delivery parameters needed to use microencapsulated cells for tissue regeneration remain unknown.

View Article and Find Full Text PDF

Cell-based therapies have potential for tissue regeneration but poor delivery methods lead to low viability or dispersal of cells from target sites, limiting clinical utility. Here, we developed a degradable and injectable hydrogel to deliver stem cells for bone regeneration. Alginate microbeads <200 μm are injectable, persist at implantation sites and contain viable cells, but do not readily degrade in-vivo.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3h1io9pilau63gquf15dhuoqqvqtdt7k): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once