Publications by authors named "Shiquen Zhang"

Background: We sought to study the effects of chronic exposure to fluoxetine - a selective serotonin reuptake inhibitor (SSRI) and specific 5-HT(2B) receptor agonist in astrocytes - on the expression of kainate receptors (GluK1-5) in cultured astrocytes and in intact brains in mice and on GluK2 editing by adenosine deaminase acting on RNA (ADAR), as well as the ensuing effects of fluoxetine on glutamate-mediated Ca(2+) influx and extracellular signal-regulated kinase (ERK)(1/2) phosphorylation in astrocytes.

Methods: We performed reverse transcription-polymerase chain reaction (PCR) to assess mRNA expression. We analyzed RNA editing with amplification refractory mutation system PCR and complementary DNA sequencing.

View Article and Find Full Text PDF

In well-differentiated primary cultures of mouse astrocytes, which express no serotonin transporter (SERT), the 'serotonin-specific reuptake inhibitor' (SSRI) fluoxetine leads acutely to 5-HT2B receptor-mediated, transactivation-dependent phosphorylation of extracellular regulated kinases 1/2 (ERK1/2) with an EC50 of ~5 μM, and chronically to ERK1/2 phosphorylation-dependent upregulation of mRNA and protein expression of calcium-dependent phospholipase A2 (cPLA2) with ten-fold higher affinity. This affinity is high enough that fluoxetine given therapeutically may activate astrocytic 5-HT2B receptors (Li et al., 2008, 2009).

View Article and Find Full Text PDF

We have previously shown that fluoxetine causes ERK(1/2) phosphorylation in cultured mouse astrocytes mediated exclusively by stimulation of 5-HT(2B) receptors (Li et al., 2008b). This raises the question whether this is also the case for serotonin (5-HT) itself.

View Article and Find Full Text PDF

EGF receptor transactivation has been known for more than ten years. It is a signal pathway in which a G-protein-coupled receptor (GPCR) signal leads to release of a growth factor, which in turn activates the EGF receptor-tyrosine kinase in the same or adjacent cells. Astrocytes express a number of GPCRs and play key roles in brain function.

View Article and Find Full Text PDF

Although Na+,K+-ATPase-mediated K+ uptake into astrocytes plays a major role in re-establishing resting extracellular K+ following neuronal excitation little information is available about astrocytic Na+,K+-ATPase function, let alone mechanisms returning K+ to neurons. The catalytic units of the Na+,K+-ATPase are the astrocyte-specific α2, the neuron-specific α3 and the ubiquitously expressed α1. In the present work, Bmax and KD values for α1, α2 and α3 subunits were computed in cultured cerebro-cortical mouse astrocytes and cerebellar granule neurons by non-linear regression as high-affinity (α2, α3) and low-affinity (α1) [3H]ouabain binding sites, which stoichiometrically equal transporter sites.

View Article and Find Full Text PDF

Introduction: We have recently shown that fluoxetine, a serotonin-specific reuptake inhibitor (SSRI), has low micromolar affinity for the 5-HT(2C) receptor (but not for 5-HT(2A) and 5-HT(2B) receptors) in primary cultures of mouse astrocytes. This was determined as phosphorylation (stimulation) of extracellular-regulated kinase 1 and 2 (ERK(1/2)) by transactivation-mediated phosphorylation of the epidermal growth factor (EGF) receptor, followed by conventional EGF receptor signaling (Li et al., Psychopharmacology 194:333-334, 2007).

View Article and Find Full Text PDF

Recent studies have indicated that glutamatergic transmission may be altered in bipolar disorder and affected by chronic treatment with mood-stabilizing drugs. Kainate receptors may be of special interest because i) they have a modulatory role in synaptic transmission, long-term potentiation (LTP) and long-term depression (LDP); and ii) involvement of the kainate receptor subunit GluK2 (GluR6) in behavioral symptoms thought characteristic of mania has been demonstrated in knock-out mice. Glutamate receptors are expressed not only on neurons, but also on astrocytes, where they contribute to regulation of synaptic activity.

View Article and Find Full Text PDF

Rationale: Fluoxetine has relatively high affinity for Gq/11 protein-coupled 5-HT(2) receptors. Part of these receptors in brain are on astrocytes, where fluoxetine causes an increase in free cytosolic calcium concentration ([Ca(2+)](i)) and phosphorylation of extracellular regulated kinase 1 and 2 (ERK(1/2)).

Objective: The objectives of the study are to identify subtype of the 5-HT(2) receptor involved, to establish whether ERK(1/2) phosphorylation is a result of 5-HT(2)-mediated transactivation of epidermal growth factor (EGF) receptors (EGFRs), and to determine signaling pathways up- and downstream of ERK(1/2).

View Article and Find Full Text PDF