The arrangement of the induction coil influences the electromagnetic damping force and output characteristics of electromagnetic energy harvesters. Based on the aforementioned information, this paper presents a proposal for a multiple off-center coil electromagnetic galloping energy harvester (MEGEH). This study establishes both a theoretical model and a physical model to research the influence of the position and quantity of the induction coils on the output characteristics of an energy harvester.
View Article and Find Full Text PDFMicromachines (Basel)
April 2023
In order to improve the output characteristics of the electromagnetic energy harvester in a high-speed flow field, a spring-coupling electromagnetic energy harvester (SEGEH) is proposed, based on the galloping characteristics of a large amplitude. The electromechanical model of the SEGEH was established, the test prototype was made, and the experiments were conducted using a wind tunnel platform. The coupling spring can convert the vibration energy consumed by the vibration stroke of the bluff body without inducing an electromotive force into the elastic energy of the spring.
View Article and Find Full Text PDFIn this paper, a frequency-adjustable tuning fork electromagnetic energy harvester is introduced. The electromagnetic vibration energy harvester can adjust its natural frequency according to a change in the environmental excitation frequency without any change to the structure. In the frequency-adjustable range, it can make the energy harvester resonant with the environment excitation, and the output frequency stays the same.
View Article and Find Full Text PDFThe classical continuum mechanics theory cannot sufficiently describe the effect of pebbles on projectile, which leads to a large calculation error. In this paper, an orthogonal curvilinear coordinate system is constructed, which effectively describes and perfects the normal cavity expansion theory. A couple stress theory based on the normal cavity expansion is proposed in which not only the tangential movements but also the rotations of the concrete medium are considered.
View Article and Find Full Text PDFIn this paper, a novel tuning fork structure for self-frequency up-conversion is proposed. The structure has an in-phase vibration mode and an anti-phase vibration mode. The in-phase vibration mode is used to sense the environment vibration, and the anti-phase vibration mode is used for energy conversion and power generation.
View Article and Find Full Text PDFA new micromachined vibrating ring gyroscope (VRG) architecture with low quadrature error and high-linearity is proposed, which successfully optimizes the working modes to first order resonance mode of the structure. The improved mode ordering can significantly reduce the vibration sensitivity of the device by adopting the hinge-frame mechanism. The frequency difference ratio is introduced to represent the optimization effect of modal characteristic.
View Article and Find Full Text PDFFor a microelectromechanical system (MEMS) piezoelectric energy harvester consisting of double-clamped beams, the effects of both beam shape and electrode arrangement on the voltage outputs are analyzed. For two kinds of harvester structures including millimeter-scale and micro-scale, and different shapes including rectangular, segmentally trapezoidal and concave parabolic are taken into account. Corresponding electric outputs are calculated and tested.
View Article and Find Full Text PDFThis paper presents the design and analysis of a new micro-electro-mechanical system (MEMS) tuning fork gyroscope (TFG), which can effectively improve the mechanical sensitivity of the gyroscope sense-mode by the designed leverage mechanism. A micromachined TFG with an anchored leverage mechanism is designed. The dynamics and mechanical sensitivity of the design are theoretically analyzed.
View Article and Find Full Text PDFQuasi-static and dynamic compression experiments were performed to study the influence of liquid nitrile rubber (LNBR) on the mechanical properties of epoxy resin. The quasi-static experiments were conducted by an electronic universal machine under strain rates of 0.0001/s and 0.
View Article and Find Full Text PDFSensors (Basel)
September 2016
This paper presents analytical models, as well as numerical and experimental verification of intrinsic dissipation due to thermoelastic loss in tuning-fork resonator. The thermoelastic analytical governing equations are created for resonator vibrating at drive-mode and sense-mode, and thermoelastic vibration field quantities are deduced. Moreover, the theoretical values are verified that coincided well with finite element analysis (FEM) simulation results.
View Article and Find Full Text PDFIn this paper, a stiffness match method is proposed to reduce the vibration sensitivity of micromachined tuning fork gyroscopes. Taking advantage of the coordinate transformation method, a theoretical model is established to analyze the anti-phase vibration output caused by the stiffness mismatch due to the fabrication imperfections. The analytical solutions demonstrate that the stiffness mismatch is proportional to the output induced by the external linear vibration from the sense direction in the anti-phase mode frequency.
View Article and Find Full Text PDFIn this paper, a new micromachined tuning fork gyroscope (TFG) with an anchored diamond coupling mechanism is proposed while the mode ordering and the vibration sensitivity are also investigated. The sense-mode of the proposed TFG was optimized through use of an anchored diamond coupling spring, which enables the in-phase mode frequency to be 108.3% higher than the anti-phase one.
View Article and Find Full Text PDF