Publications by authors named "Shiqiang Xia"

Article Synopsis
  • The text discusses a new method to analyze how electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS) affect laser spectroscopy in a four-level microwave-dressed Rydberg system.
  • It highlights that when a microwave field is introduced and its intensity adjusted, the behavior of transparency windows changes, with EIT being dominant when the microwave field is off and transitioning to ATS as it is increased.
  • This four-level approach offers deeper insights into quantum interference in atomic systems, with implications for improved sensitivity and applications in quantum processing and communication.
View Article and Find Full Text PDF
Article Synopsis
  • The study explores a method to create optical soliton molecules (SMs) that are two bound solitons with a π-phase difference and how they scatter when encountering a specific type of potential called parity-time (PT) symmetric.
  • To stabilize these SMs, researchers apply a magnetic field that creates a harmonic trap to counteract the repulsive forces between the solitons caused by their phase difference.
  • The scattering behavior of these SMs is significantly influenced by the characteristics of the PT-symmetric potential and the speed at which the SMs approach it, highlighting their potential use in optical information processing and transmission.
View Article and Find Full Text PDF

Metagenomic sequencing (mNGS) is a powerful diagnostic tool to detect causative pathogens in clinical microbiological testing owing to its unbiasedness and substantially reduced costs. Rapid and accurate classification of metagenomic sequences is a critical procedure for pathogen identification in dry-lab step of mNGS test. However, clinical practices of the testing technology are hampered by the challenge of classifying sequences within a clinically relevant timeframe.

View Article and Find Full Text PDF

The angle-sensitive photonic bandgap (PBG) is one of the typical features of one-dimensional photonic crystals. Based on the phase-variation compensation effect between the dielectric and hyperbolic metamaterials (HMMs), angle-insensitive PBGs can be realized in photonic hypercrystals. However, since hypercrystals are usually constructed using metal components, these angle-insensitive PBGs are mostly limited to narrow bandwidths in visible range.

View Article and Find Full Text PDF

We investigate band evolution of chiral and non-chiral symmetric flatband photonic rhombic lattices by applying a strain along the diagonal direction, and thereby demonstrating Landau-Zener Bloch (LZB) oscillations in the presence of a refractive index gradient. The chiral and non-chiral symmetric rhombic lattices are obtained by adding a detuning to uniform lattices. For the chiral symmetric lattices, the middle flatband is perturbed due to the chiral symmetry breaking while a nearly flatband appears as the bottom band with the increase of strain-induced next-nearest-neighbor hopping.

View Article and Find Full Text PDF

Contrary to conventional Tamm plasmon (TP) absorbers of which narrow absorptance peaks will shift toward short wavelengths (blueshift) as the incident angle increases for both transverse magnetic (TM) and transverse electric (TE) polarizations, here we theoretically and experimentally achieve nonreciprocal absorption in a planar photonic heterostructure composed of an isotropic epsilon-near-zero (ENZ) slab and a truncated photonic crystal for TM polarization. This exotic phenomenon results from the interplay between ENZ and material loss. And the boundary condition across the ENZ interface and the confinement effect provided by the TP can enhance the absorption in the ENZ slab greatly.

View Article and Find Full Text PDF

Realizing a polarization-insensitive broadband optical absorber plays a key role in the implementation of microstructure optoelectrical devices with on-demand functionalities. However, the challenge is that most of these devices involve the constituent metals, thus suffering from poor chemical and thermal stability and a complicated manufacturing process. In addition, the extreme contrast between the negative (metallic) and positive (dielectric) real parts of the constituent permittivities can cause additional problems in the design of structural devices.

View Article and Find Full Text PDF

Topological properties of lattices are typically revealed in momentum space using concepts such as the Chern number. Here, we study unconventional loop states, namely, the noncontractible loop states (NLSs) and robust boundary modes, mediated by nontrivial topology in real space. While such states play a key role in understanding fundamental physics of flatband systems, their experimental observation has been hampered because of the challenge in realizing desired boundary conditions.

View Article and Find Full Text PDF

Flatband systems typically host "compact localized states" (CLS) due to destructive interference and macroscopic degeneracy of Bloch wave functions associated with a dispersionless energy band. Using a photonic Lieb lattice (LL), such conventional localized flatband states are found to be inherently incomplete, with the missing modes manifested as extended line states that form noncontractible loops winding around the entire lattice. Experimentally, we develop a continuous-wave laser writing technique to establish a finite-sized photonic LL with specially tailored boundaries and, thereby, directly observe the unusually extended flatband line states.

View Article and Find Full Text PDF
Article Synopsis
  • The text presents a new analytical expression for the resonance frequencies of plasmonic nanoresonators shaped like folded rectangles, derived from circuit theory.
  • It explains how electromagnetic forces from varying charge distributions lead to nonlinear resonance responses pertaining to the oscillation of free electrons in these structures.
  • The proposed theory effectively predicts resonance behavior across a variety of geometries and materials, supporting its findings with numerical simulations and suggesting potential applications in designing advanced plasmonic systems.
View Article and Find Full Text PDF

In this research, we studied enhanced diffuse reflectance that can be achieved by excitations of multiple-scattering in a hybrid micro-structured titanium dioxide coating. Conventional approaches to obtain diffuse reflection structure rely heavily on exciting the scattering of randomly textured surface, whereas here, we reveal numerically and experimentally that, besides interface scattering, bulk scattering of ordered-disordered hybrid structure can be also employed to obtain highly efficient diffuse reflector. The diffuse reflectance over the measured wavelength region increases significantly with thickness, while angle and polarization-dependent specular reflections are suppressed.

View Article and Find Full Text PDF

We present a simple, yet effective, approach for optical induction of Lieb photonic lattices, which typically rely on the femtosecond laser writing technique. Such lattices are established by judiciously overlapping two sublattices (an "egg-crate" lattice and a square lattice) with different periodicities through a self-defocusing photorefractive medium. Furthermore, taking advantage of the superposition of localized flat-band states inherent in the Lieb lattices, we demonstrate distortion-free image transmission in such two-dimensional perovskite-like photonic structures.

View Article and Find Full Text PDF

We report the first experimental demonstration of localized flat-band states in optically induced Kagome photonic lattices. Such lattices exhibit a unique band structure with the lowest band being completely flat (diffractionless) in the tight-binding approximation. By taking the advantage of linear superposition of the flat-band eigenmodes of the Kagome lattices, we demonstrate a high-fidelity transmission of complex patterns in such two-dimensional pyrochlore-like photonic structures.

View Article and Find Full Text PDF

We demonstrate self-trapping and rotation of higher-band dipole and quadruple-like gap solitons by single-site excitation in a two-dimensional square photonic lattice under self-focusing nonlinearity. Experimental results show that the second-band dipole gap solitons reside in the first photonic (Bragg reflection) gap, whereas the quadruple-like gap solitons are formed in an even higher photonic gap, resulting from modes of the third-band. Moreover, both dipole and quadruple-like gap solitons exhibit dynamical rotation around the lattice principle axes and the direction of rotation is changing periodically during propagation, provided that they are excited under appropriate initial conditions.

View Article and Find Full Text PDF