Channelrhodopsins (ChRs) are light-gated ion channels originally discovered in algae and are commonly used in neuroscience for controlling the electrical activity of neurons with high precision. Initially-discovered ChRs were non-selective cation channels, allowing the flow of multiple ions, such as Na, K, H, and Ca, leading to membrane depolarization and triggering action potentials in neurons. As the field of optogenetics has evolved, ChRs with more specific ion selectivity were discovered or engineered, offering more precise optogenetic manipulation.
View Article and Find Full Text PDFUnlabelled: The PHOSPHATE STARVATION RESPONSE REGULATOR (PHR) plays a crucial regulatory role in plants during the process of responding to phosphate starvation. In this study, we combined reverse genetics and biotechnology to investigate the function of and , including proteins containing the Myb_DNA_banding and Myb_CC-LHEQLE structural domains, in maize seedlings. Phylogenetic analysis revealed that and have high homology with and , and share the characteristic features of nuclear localisation and transcriptional self-activation.
View Article and Find Full Text PDFMicrophthalmia, mostly an autosomal dominant disorder, is a worldwide severe congenital ocular malformation that causes visual impairment. Our investigation unveiled a total of 30 genes associated with microphthalmia. Employing the CytoHubba and PPI network, we identified Bmp4 as the most pivotal hub gene.
View Article and Find Full Text PDFEarly plant responses to different stress situations often encompass cytosolic Ca increases, plasma membrane depolarization and the generation of reactive oxygen species. However, the mechanisms by which these signalling elements are translated into defined physiological outcomes are poorly understood. Here, to study the basis for encoding of specificity in plant signal processing, we used light-gated ion channels (channelrhodopsins).
View Article and Find Full Text PDFExtensive and comprehensive phenotypic data from a maize RIL population under both low- and normal-Pi treatments were used to conduct QTL mapping. Additionally, we integrated parental resequencing data from the RIL population, GWAS results, and transcriptome data to identify candidate genes associated with low-Pi stress in maize. Phosphorus (Pi) is one of the essential nutrients that greatly affect the maize yield.
View Article and Find Full Text PDFPhosphorus (P) is a crucial macronutrient for plant growth and development, and low-Pi stress poses a significant limitation to maize production. While the role of the SPX domain in encoding proteins involved in phosphate (Pi) homeostasis and signaling transduction has been extensively studied in other model plants, the molecular and functional characteristics of the gene family members in maize remain largely unexplored. In this study, we identified six members, and the phylogenetic analysis of s revealed a close relationship with genes in rice.
View Article and Find Full Text PDFPhosphorus (P) is an essential element for plant growth, and its deficiency can cause decreased crop yield. This study systematically evaluated the low-phosphate (Pi) response traits in a large population at maturity and seedling stages, and explored candidate genes and their interrelationships with specific traits. The results revealed a greater sensitivity of seedling maize to low-Pi stress compared to that at maturity stage.
View Article and Find Full Text PDFExamining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW.
View Article and Find Full Text PDFA previous metabolomic and genome-wide association analysis of maize screened a glucose-6-phosphate 1-epimerase () gene, which responds to low-phosphorus (LP) stress and regulates yield in maize's recombinant inbred lines (RILs). However, the relationship of with phosphorus and yield remained elusive. This study aimed to elucidate the underlying response mechanism of the gene to LP stress and its consequential impact on maize yield.
View Article and Find Full Text PDFMicrobial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive.
View Article and Find Full Text PDFMany channelrhodopsins are permeable to protons. We found that in neurons, activation of a high-current channelrhodopsin, CheRiff, led to significant acidification, with faster acidification in the dendrites than in the soma. Experiments with patterned optogenetic stimulation in monolayers of HEK cells established that the acidification was due to proton transport through the opsin, rather than through other voltage-dependent channels.
View Article and Find Full Text PDFChromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure.
View Article and Find Full Text PDFWater transport through water channels, aquaporins (AQPs), is vital for many physiological processes including epithelial fluid secretion, cell migration and adipocyte metabolism. Water flux through AQPs is driven by the osmotic gradient that results from concentration differences of solutes including ions. Here, we developed a novel optogenetic toolkit that combines the light-gated anion channel GtACR1 either with the light-gated K channel HcKCR1 or the new Na channelrhodopsin HcNCR1 with high Na permeability, to manipulate water transport in Xenopus oocytes non-invasively.
View Article and Find Full Text PDFOptogenetics is a technique employing natural or genetically engineered photoreceptors in transgene organisms to manipulate biological activities with light. Light can be turned on or off, and adjusting its intensity and duration allows optogenetic fine-tuning of cellular processes in a noninvasive and spatiotemporally resolved manner. Since the introduction of Channelrhodopsin-2 and phytochrome-based switches nearly 20 years ago, optogenetic tools have been applied in a variety of model organisms with enormous success, but rarely in plants.
View Article and Find Full Text PDFChannelrhodopsin 2 (ChR2) and its variants are the most frequent tools for remote manipulation of electrical properties in cells via light. Ongoing attempts try to enlarge their functional spectrum with respect to ion selectivity, light sensitivity and protein trafficking by mutations, protein engineering and environmental mining of ChR2 variants. A shortcoming in the required functional testing of large numbers of ChR2 variants is the lack of an easy screening system.
View Article and Find Full Text PDFUnlabelled: Many channelrhodopsins are permeable to protons. We found that in neurons, activation of a high-current channelrhodopsin, CheRiff, led to significant acidification, with faster acidification in the dendrites than in the soma. Experiments with patterned optogenetic stimulation in monolayers of HEK cells established that the acidification was due to proton transport through the opsin, rather than through other voltage-dependent channels.
View Article and Find Full Text PDFNutrient restrictions and large-scale emergence of diseases are threatening the maize production. Recent findings demonstrated that there is a certain synergistic interaction between nutrition and diseases pathways in model plants, however there are few studies on the synergistic genes of nutrients and diseases in maize. Thus, the transcriptome data of nitrogen (N) and phosphorus (P) nutrients and diseases treatments in maize, rice, wheat and Arabidopsis thaliana were collected in this study, and four and 22 weighted co-expression modules were obtained by using Weighted Gene Co-expression Network Analysis (WGCNA) in leaf and root tissues, respectively.
View Article and Find Full Text PDFSepsis-induced myocardiopathy, characterized by innate immune cells infiltration and proinflammatory cytokines release, may lead to perfusion failure or even life-threatening cardiogenic shock. Macrophages-mediated inflammation has been shown to contribute to sepsis-induced myocardiopathy. In the current study, we introduced two photoactivated adenylyl cyclases (PACs), sp.
View Article and Find Full Text PDFCyclic guanosine monophosphate (cGMP) signalling plays a fundamental role in many cell types, including platelets. cGMP has been implicated in platelet formation, but mechanistic detail about its spatio-temporal regulation in megakaryocytes (MKs) is lacking. Optogenetics is a technique which allows spatio-temporal manipulation of molecular events in living cells or organisms.
View Article and Find Full Text PDFMethods Mol Biol
July 2022
Rhodopsins with enzymatic activity were found in microbes, in 2004 hypothetically from sequence data and since 2014 by experimental proof. So far three different types are known: light-activated guanylyl cyclase opsins (Cyclop) in fungi, light-inhibited two-component guanylyl cyclase opsins (2c-Cyclop) in green algae, and rhodopsin phosphodiesterases (RhoPDE) in choanoflagellates. They are integral membrane proteins with eight transmembrane helices (TM), different to the other microbial (type I) rhodopsins with 7 TM.
View Article and Find Full Text PDFMembrane transport proteins perform crucial roles in cell physiology. The obligate intracellular parasite Plasmodium falciparum, an agent of human malaria, relies on membrane transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, exchange of metabolites between organelles, and generation and maintenance of transmembrane electrochemical gradients for its growth and replication within human erythrocytes. Despite their importance for cellular physiology, the functional roles of a number of membrane transport proteins remain unclear, which is particularly true for orphan membrane transporters that have no or limited sequence homology to transporter proteins in other evolutionary lineages.
View Article and Find Full Text PDFMicrobial rhodopsins have advanced optogenetics since the discovery of channelrhodopsins almost two decades ago. During this time an abundance of microbial rhodopsins has been discovered, engineered, and improved for studies in neuroscience and other animal research fields. Optogenetic applications in plant research, however, lagged largely behind.
View Article and Find Full Text PDFUnlabelled: The discovery and characterization of the opaque endosperm gene provide ideas and resources for the production and application of maize. We found an mutant whose phenotype was opaque and shrunken endosperm with semi-dwarf plant height. The protein, lipid, and starch contents in the endosperm were significantly decreased, while the free amino acid content in the endosperm significantly increased.
View Article and Find Full Text PDFEnzyme rhodopsins, including cyclase opsins (Cyclops) and rhodopsin phosphodiesterases (RhoPDEs), were recently discovered in fungi, algae and protists. In contrast to the well-developed light-gated guanylyl/adenylyl cyclases as optogenetic tools, ideal light-regulated phosphodiesterases are still in demand. Here, we investigated and engineered the RhoPDEs from , and three other protists.
View Article and Find Full Text PDF