Non-small cell lung cancer (NSCLC) remains a significant global health burden, and there is an urgent need for new treatment options. Trophoblast cell surface antigen-2 (TROP-2), a target closely associated with NSCLC prognosis, has become a research hotspot in recent years. Notably, TROP-2-targeted antibody-drug conjugates (ADCs) have made groundbreaking advances in NSCLC therapy.
View Article and Find Full Text PDFBackground: The effects of gut microbiota and metabolites on the responses to immune checkpoint inhibitors (ICIs) in advanced epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLC) have been studied. However, their effects on EGFR-mutated (EGFR +) NSCLC remain unknown.
Methods: We prospectively recorded the clinicopathological characteristics of patients with advanced EGFR + NSCLC and assessed potential associations between the use of antibiotics or probiotics and immunotherapy efficacy.
Background: Tertiary lymphoid structures (TLSs) affect the prognosis and efficacy of immunotherapy in patients with non-small cell lung cancer (NSCLC), but the underlying mechanisms are not well understood.
Methods: TLSs were identified and categorized online from the Cancer Digital Slide Archive (CDSA). Overall survival (OS) and disease-free survival (DFS) were analyzed.
: COVID-19 has been ravaging the globe for more than three years. Due to systemic immunosuppression of anti-tumor therapy, application of chemotherapy and adverse effects of surgery, the short- and long-term prognosis of cancer patients to COVID-19 are of significant concern. : This research included three parts of data.
View Article and Find Full Text PDFIntroduction: EGFR C797X (C797S or C797G) mutation is the most frequent on-target mechanism of resistance to osimertinib. The hypothesis that the allelic context of C797X/T790M has implications for treatment is on the basis of sporadic reports and needs validation with larger cohorts.
Methods: We identified patients with EGFR C797X-mutant NSCLC from nine centers who progressed on osimertinib, all analyzed in a single laboratory through next-generation sequencing.
Implanted materials with both osteogenic and antibacterial functions are promising for facilitating osteointegration and preventing infection for orthopedic applications. In this work, we synthesized flower-like molybdenum disulfide (fMD) submicro-spheres containing nanosheets, which were incorporated onto the microporous surface of polyimide (PI) concentrated sulfuric acid, suspending fMD contents of 5 wt% (SPM1) and 10 wt% (SPM2). Compared with sulfonated polyimide (SPM0), both SPM1 and SPM2 with microporous surfaces containing fMD exhibited nano-submicro-microporous surfaces, which improved the surface roughness, wettability, and surface energy.
View Article and Find Full Text PDFPolymeric biocomposites display some advantages over metal or ceramic biomaterials, and are regarded as a promising candidate for artificial joint application. Herein, molybdenum disulfide (MD) nanosheets were prepared and incorporated into polyimide (PI) to form MD/PI composites with a MD content of 20 wt% (PM20) and 40 wt% (PM40). The results revealed that incorporation of MD nanosheets obviously improved the tribological performances, surface properties (, roughness, wettability and surface energy) and protein absorption of the composites, which enhanced with the increase of MD content.
View Article and Find Full Text PDFSurface characteristics of the biomaterials have significant effects on response of osteoblast and formation of new bone tissue. In this study, to improve the bio-performance of polyimide (PI) as an implantable material for bone substitute, concentrated sulfuric acid suspension with tantalum (V) oxide (vTO) submicro-particles of 10w% (PIST10) and 15w% (PIST15) was utilized to modify PI surface. After sulfonation, microporous coatings including vTO particles were created on PI (PIST10 and PIST15) while microporous coating without vTO particles was also created on PI (PIS).
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) (eg, gefitinib) exert potent therapeutic efficacy in non-small-cell lung cancer (NSCLC) harboring EGFR-activating mutations. However, the resistance to EGFR TKIs limits their clinical therapeutic efficacy. TIP30, a newly identified tumor suppressor, appears to be involved in the regulation of cytoplasmic and nuclear EGFR signaling in NSCLC.
View Article and Find Full Text PDFPurpose: Polyetheretherketone (PEEK) exhibits high mechanical strengths and outstanding biocompatibility but biological inertness that does not excite the cell responses and stimulate bone formation. The objective of this study was to construct submicro-nano structures on PEEK by femtosecond laser (FSL) for exciting the responses of MC3T3-E1 cells and gingival epithelial (GE) cells, which induce regeneration of bone/gingival tissues for long-term stability of dental implants.
Materials And Methods: In this study, submicro-nano structures were created on PEEK surface by FSL with power of 80 mW (80FPK) and 160 mW (160FPK).
As an implantable biomaterial, polyetherketoneketone (PEKK) exhibits good mechanical strength but it is biologically inert while tantalum (Ta) possesses outstanding osteogenic bioactivity but has a high density and elastic modulus. Also, silicon nitride (SN) has osteogenic and antibacterial activity. In this study, a microporous surface containing both SN and Ta microparticles on PEKK (STP) exhibiting excellent osteogenic and antibacterial activity was created by sulfonation.
View Article and Find Full Text PDFPurpose: As a dental material, polyetheretherketone (PEEK) is bioinert that does not induce cellular response and bone/gingival tissues regeneration. This study was to develop bioactive coating on PEEK and investigate the effects of coating on cellular response.
Materials And Methods: Tantalum pentoxide (TP) coating was fabricated on PEEK surface by vacuum evaporation and responses of rat bone marrow mesenchymal stem (RBMS) cells/human gingival epithelial (HGE) were studied.
Poly(propylene carbonate) (PPC) has aroused extensive attention in the biomaterial field because of its excellent biocompatibility and appropriate degradability, but surface hydrophobicity and bioinertness limit its applications for bone repair and tissue engineering. In this study, a bioactive PPC/laponite (LAP) nanocomposite (PL) was prepared by a melt-blending method, and a microporous surface on PPC and PL (PT and PLT) was created by sodium hydroxide (NaOH) treatment. The results demonstrated that the surface roughness, hydrophilicity, surface energy, and degradability as well as protein adsorption of PLT were obviously improved compared with PPC.
View Article and Find Full Text PDFNanoporous tantalum pentoxide (NTP) particles with a pore size of about 10 nm were synthesized and blended with polyetheretherketone (PEEK) to fabricate a PEEK/NTP composite (PN). Subsequently, PN was treated by concentrated sulfuric acid to create a microporous surface (pore size of around 2 μm) on sulfonated PN (SPN), which formed a hierarchical micro & nanoporous surface. Compared with PN, the porous surface of SPN exhibited higher roughness, hydrophilicity, and surface energy.
View Article and Find Full Text PDFPolyetherketoneketone (PEKK) exhibits admirable biocompatibility and mechanical performances but bioinert while tantalum (Ta) possesses excellent osteogenesis and osseointegration but high elastic modulus and density, and processing is too difficult and expensive. In the present study, combining of the advantages of both PEKK and Ta, implantable composites of PEKK/Ta were fabricated by blending PEKK with Ta microparticles of 20 v% (PT20) and 40 v% (PT40) content. In comparison with PT20 and PEKK, the surface hydrophilicity, surface energy, roughness and proteins adsorption as well as mechanical performances of PT40 significantly increased because of the higher Ta particles content in PEKK.
View Article and Find Full Text PDFTo improve the bioperformances of porous polyetheretherketone (PPK) for bone repair, silicon nitride-coated PPK (CSNPPK) was prepared by a method of suspension coating and melt binding. The results revealed that, as compared with PPK, the surface roughness, compressive strength, and water absorption of CSNPPK increased, while the pore size and porosity of CSNPPK exhibited no obvious changes. In addition, the cellular responses (including attachment, proliferation, and differentiation as well as osteogenically related gene expressions) of the MC3T3-E1 cells to CSNPPK were remarkably promoted compared with PPK and dense polyetheretherketone in vitro.
View Article and Find Full Text PDFPolyetheretherketone (PEEK) biomaterial has become increasingly popular in orthopedic applications due to its favorable biocompatibility, biostability, mechanical strength and elastic modulus similar to natural bones. In this research, in order to improve the biological performances of PEEK, tantalum pentoxide (TaO) was incorporated into PEEK to fabricate PEEK/TaO composites (PTC) using a method of cold press-sintering, and surface coarsening of PTC was prepared by sand blasting. The results showed that the TaO particles were uniformly disperse into PEEK, and thermal and mechanical properties of PTC were enhanced with the increase of TaO content.
View Article and Find Full Text PDF