Cell nucleus is the desired subcellular organelle of many therapeutic drugs. Although numerous nanomaterial-based methods have been developed which could facilitate nuclear-targeted delivery of small-molecule drugs, few are known to be capable of delivering exogenous native proteins. Herein, we report a convenient and highly robust approach for effective nuclear-targeted delivery of native proteins/antibodies by using biodegradable silica nanocapsules (BSNPs) that were surface-modified with different nuclear localization signals (NLS) peptides.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) represents a key challenge in developing brain-penetrating therapeutic molecules. BBB dysfunction is also associated with the onset and progression of various brain diseases. The BBB-on-a-chip (μBBB), an organ-on-chip technology, has emerged as a powerful platform that closely mimics the human BBB microenvironments.
View Article and Find Full Text PDFPorous silicon nanoparticles (pSiNPs) are widely utilized as drug carriers due to their excellent biocompatibility, large surface area, and versatile surface chemistry. However, the dispersion in pore size and biodegradability of pSiNPs arguably have hindered the application of pSiNPs for controlled drug release. Here, a step-changing solution to this problem is described involving the design, synthesis, and application of three different linker-drug conjugates comprising anticancer drug doxorubicin (DOX) and different stimulus-cleavable linkers (SCLs) including the photocleavable linker (ortho-nitrobenzyl), pH-cleavable linker (hydrazone), and enzyme-cleavable linker (β-glucuronide).
View Article and Find Full Text PDFMicrofluidic-based organs-on-chips (OoCs) are a rapidly developing technology in biomedical and chemical research and have emerged as one of the most advanced and promising models. The miniaturization, stimulated tissue mechanical forces, and microenvironment of OoCs offer unique properties for biomedical applications. However, the large amount of data generated by the high parallelization of OoC systems has grown far beyond the scope of manual analysis by researchers with biomedical backgrounds.
View Article and Find Full Text PDF