Publications by authors named "Shiou-Ting Li"

We presented a facile and scalable route for the synthesis of di-azido sugars one-pot double inversion of the mono-benzoyl sugars by TBAN and studied the dependency pattern between solvent and protecting groups as well as the configuration of the neighboring and leaving groups. Moreover, we developed a chemical synthetic strategy for pseudaminic acid precursors (11 steps in 49%). Furthermore, we discussed the configuration of nonulosonic acid precursors for specificity of PseI and PmNanA enzymatic synthesis, permitting us to synthesize new nonulosonic acid derivatives for accessing Pse isomers.

View Article and Find Full Text PDF

Fucose is an important component of many oligo- and polysaccharide structures as well as glycoproteins and glycolipids, which are often associated with a variety of physiological processes ranging from fertilization, embryogenesis, signal transduction, and disease progression, such as rheumatoid arthritis, inflammation, and cancer. The enzyme α-l-fucosidase is involved in the cleavage of the fucosidic bond in glycans and glycoconjugates, particularly the Fuc-α-1,2-Gal, Fuc-α-1,3/4-GlcNAc, and Fuc-α-1,6-GlcNAc linkages. Here, we report a highly efficient fucosidase, designated as BfFucH identified from a library of bacterial glycosidases expressed in E.

View Article and Find Full Text PDF

Glycoconjugates are ubiquitously present and play a critical role in various biological processes. Due to their low stability and incredibly high degree of structural diversity, the structural characterization of glycan generally requires chemical derivatization and sophisticated instrumentation. Herein, we report a method for complicated glycan characterization in a single assay by employing 2,5-dihydroxybenzoic acid functionalized mercury telluride nanoparticles (HgTe@DHB NPs) as a dual ionization-dissociation element in matrix-assisted laser desorption/ionization mass spectrometry.

View Article and Find Full Text PDF

Antibodies have been developed as therapeutic agents for the treatment of cancer, infection, and inflammation. In addition to binding activity toward the target, antibodies also exhibit effector-mediated activities through the interaction of the Fc glycan and the Fc receptors on immune cells. To identify the optimal glycan structures for individual antibodies with desired activity, we have developed an effective method to modify the Fc-glycan structures to a homogeneous glycoform.

View Article and Find Full Text PDF

Globo H-based therapeutic cancer vaccines have been tested in clinical trials for the treatment of late stage breast, ovarian, and prostate cancers. In this study, we explored Globo H analogue antigens with an attempt to enhance the antigenic properties in vaccine design. The Globo H analogues with modification at the reducing or nonreducing end were synthesized using chemoenzymatic methods, and these modified Globo H antigens were then conjugated with the carrier protein diphtheria toxoid cross-reactive material (CRM) 197 (DT), and combined with a glycolipid C34 as an adjuvant designed to induce a class switch to form the vaccine candidates.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), the grade IV astrocytoma, is the most common and aggressive brain tumor in adults. Despite advances in medical management, the survival rate of GBM patients remains poor, suggesting that identification of GBM-specific targets for therapeutic development is urgently needed. Analysis of several glycan antigens on GBM cell lines revealed that eight of 11 GBM cell lines are positive for stage-specific embryonic antigen-4 (SSEA-4), and immunohistochemical staining confirmed that 38/55 (69%) of human GBM specimens, but not normal brain tissue, were SSEA-4(+) and correlated with high-grade astrocytoma.

View Article and Find Full Text PDF

The structural diversity of glycoproteins often comes from post-translational glycosylation with heterogeneous N-glycans. Understanding the complexity of glycans related to various biochemical processes demands a well-defined synthetic sugar library. We report herein a unified convergent strategy for the rapid production of bi-, tri-, and tetra-antennary complex type N-glycans with and without terminal N-acetylneuraminic acid residues connected via the α-2,6 or α-2,3 linkages.

View Article and Find Full Text PDF

Carbohydrate-based vaccines have shown therapeutic efficacy for infectious disease and cancer. The mushroom Ganoderma lucidum (Reishi) containing complex polysaccharides has been used as antitumor supplement, but the mechanism of immune response has rarely been studied. Here, we show that the mice immunized with a l-fucose (Fuc)-enriched Reishi polysaccharide fraction (designated as FMS) induce antibodies against murine Lewis lung carcinoma cells, with increased antibody-mediated cytotoxicity and reduced production of tumor-associated inflammatory mediators (in particular, monocyte chemoattractant protein-1).

View Article and Find Full Text PDF

Globo H (GH) is a hexasaccharide specifically overexpressed on a variety of cancer cells and therefore, a good candidate for cancer vaccine development. To identify the optimal carrier and adjuvant combination, we chemically synthesized and linked GH to a carrier protein, including keyhole limpet hemocyanion, diphtheria toxoid cross-reactive material (CRM) 197 (DT), tetanus toxoid, and BSA, and combined with an adjuvant, and it was administered to mice for the study of immune response. Glycan microarray analysis of the antiserum obtained indicated that the combination of GH-DT adjuvanted with the α-galactosylceramide C34 has the highest enhancement of anti-GH IgG.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the most common human malignancies. Therefore, developing the early, high-sensitivity diagnostic biomarkers to prevent HCC is urgently needed. Serum a-fetoprotein (AFP), the clinical biomarker in current use, is elevated in only ~60% of patients with HCC; therefore, identification of additional biomarkers is expected to have a significant impact on public health.

View Article and Find Full Text PDF

Several new stereoisomers of 3,4,6-trihydroxyazepanes and 7-hydroxymethyl-3,4,5-trihydroxyazepanes as well as known 3,4,5-trihydroxyazepanes were synthesized as potent glycosidase inhibitors from D-(-)-quinic acid in an efficient manner. The key step employs dihydroxylation of protected chiral 1,4,5-cyclohex-2-enetriols under RuCl3/NaIO4/phosphate buffer (pH 7) condition, followed by reductive amino cyclization. We found the choice of an appropriate protecting group to C1-OH of chiral 1,4,5-cyclohex-2-enetriols would increase the yields of cyclization.

View Article and Find Full Text PDF

An efficient method for examining the selectivity of inhibitors on two alpha-fucosidases, one from Thermotoga maritima and the other from human, was established. The X-ray crystal structure of the former enzyme makes possible the homology modeling of the human alpha-fucosidase, indicating the major difference between both enzymes in the periphery of the catalytic site. To investigate the difference at the molecular level, a variety of fuconojirimycin (FNJ) derivatives with substitution at C1, C2, C6, or N were rapidly prepared in microplates and screened without purification for the inhibition activities of the two alpha-fucosidases.

View Article and Find Full Text PDF