Publications by authors named "Shiori Kuraoka"

Carnitine O-octanoyltransferase (CROT) is a well-established peroxisomal enzyme involved in liver fatty acid oxidation, but less is known about its recently discovered role in promoting vascular calcification, and whether CROT-dependent liver metabolism contributes to the latter. To date, CROT function in the context of calcification potential has been conducted in the dyslipidemic low-density lipoprotein receptor-deficient () mice. To differentiate peroxisome and CROT-dependent lipid biology from that of lipoprotein-mediated lipid biology, we therefore conducted a metabolomic analysis of the liver and plasma of normolipidemic CROT-deficient () mice.

View Article and Find Full Text PDF

Background: High circulating levels of Lp(a) (lipoprotein[a]) increase the risk of atherosclerosis and calcific aortic valve disease, affecting millions of patients worldwide. Although atherosclerosis is commonly treated with low-density lipoprotein-targeting therapies, these do not reduce Lp(a) or risk of calcific aortic valve disease, which has no available drug therapies. Targeting Lp(a) production and catabolism may provide therapeutic benefit, but little is known about Lp(a) cellular uptake.

View Article and Find Full Text PDF

ADP-ribosylation (ADPr) is a post-translational modification that is best studied using mass spectrometry. Method developments that are permissive with low inputs or baseline levels of protein ribosylation represent the next frontier in the field. High-field asymmetric waveform ion mobility spectrometry (FAIMS) reduces peptide complexity in the gas phase, providing a means to achieve maximal ADPr peptide sequencing depth.

View Article and Find Full Text PDF

Background Peripheral arterial disease (PAD) is estimated to affect 7% of the adult population in the United States; however, there is currently little understanding of the key cellular and molecular pathways at play. With PAD characterized by vascular inflammation and associated calcification, the current study set out to elucidate the role of NLRP3 (nucleotide oligomerization domain-like receptor family, pyrin domain containing 3) inflammasome activation in the current cohort. Methods and Results Global proteomics of human vessels with and without PAD from a total of 14 donors revealed an increase of proinflammatory associated ontologies, specifically acute phase and innate immunity.

View Article and Find Full Text PDF

Aims: Calcific aortic valve disease (CAVD) is the most common valve disease, which consists of a chronic interplay of inflammation, fibrosis, and calcification. In this study, sortilin (SORT1) was identified as a novel key player in the pathophysiology of CAVD, and its role in the transformation of valvular interstitial cells (VICs) into pathological phenotypes is explored.

Methods And Results: An aortic valve (AV) wire injury (AVWI) mouse model with sortilin deficiency was used to determine the effects of sortilin on AV stenosis, fibrosis, and calcification.

View Article and Find Full Text PDF

Cardiovascular calcification is the lead predictor of cardiovascular events and the top cause of morbidity and mortality worldwide. To date, only invasive surgical options are available to treat cardiovascular calcification despite the growing understanding of underlying pathological mechanisms. Key players in vascular calcification are vascular smooth muscle cells (SMCs), which transform into calcifying SMCs and secrete mineralizing extracellular vesicles that form microcalcifications, subsequently increasing plaque instability and consequential plaque rupture.

View Article and Find Full Text PDF

ADP-ribosylation is a post-translational modification that is catalyzed by the ADP-ribosyltransferase enzyme family. Major emphasis to date has been ADP-ribosylation's role in cancer; however, there is growing interest in its role in inflammation and cardiovascular disease. Despite a recent boom in ADP-ribosylation mass spectrometry-based proteomics, there are limited computational resources to evaluate the quality of reported ADP-ribosylated (ADPr) proteins.

View Article and Find Full Text PDF

Lipoprotein(a) (Lp[a]) blood levels >50 mg/dL is a major cardiovascular disease risk factor in humans. Lp(a) associates with increased cardiovascular calcification, a critical pathology with no clinically available drug therapies. The mechanisms through which Lp(a) increases cardiovascular calcification risk remain undefined.

View Article and Find Full Text PDF

Vascular calcification is a cardiovascular disorder with no therapeutic options. We recently reported that -octanoyltransferase (CROT) suppression can inhibit vascular calcification and through amelioration of mitochondrial function and fatty acid metabolism. Inhibiting calcification with a small molecule compound targeting CROT-associated mechanisms will be a promising non-invasive treatment of vascular calcification.

View Article and Find Full Text PDF

Mass-spectrometry-enabled ADP-ribosylation workflows are developing rapidly, providing researchers a variety of ADP-ribosylome enrichment strategies and mass spectrometric acquisition options. Despite the growth spurt in upstream technologies, systematic ADP-ribosyl (ADPr) peptide mass spectral annotation methods are lacking. HCD-dependent ADP-ribosylome studies are common, but the resulting MS2 spectra are complex, owing to a mixture of b/y-ions and the m/p-ion peaks representing one or more dissociation events of the ADPr moiety (m-ion) and peptide (p-ion).

View Article and Find Full Text PDF

Objective: Vascular calcification is a critical pathology associated with increased cardiovascular event risk, but there are no Food and Drug Administration-approved anticalcific therapies. We hypothesized and validated that an unbiased screening approach would identify novel mediators of human vascular calcification. Approach and Results: We performed an unbiased quantitative proteomics and pathway network analysis that identified increased CROT (carnitine O-octanoyltransferase) in calcifying primary human coronary artery smooth muscle cells (SMCs).

View Article and Find Full Text PDF

Calcific aortic valve disease (CAVD) occurs when subpopulations of valve cells undergo specific differentiation pathways, promoting tissue fibrosis and calcification. Lipoprotein particles carry oxidized lipids that promote valvular disease, but low-density lipoprotein-lowering therapies have failed in clinical trials, and there are currently no pharmacological interventions available for this disease. Apolipoproteins are known promoters of atherosclerosis, but whether they possess pathogenic properties in CAVD is less clear.

View Article and Find Full Text PDF

In vitro and in vivo binding sites of [H]-labeled 5-hydroxymethyltolterodine (5-HMT), a new radioligand for labeling muscarinic receptors in rat tissues were characterized. Specific [H]5-HMT binding in rat tissues was saturable and of high affinity in each tissue. The dissociation constant (K) was significantly lower in bladder and heart than in submaxillary gland.

View Article and Find Full Text PDF

The present study aimed to characterize muscarinic receptor binding of fesoterodine, 5-hydroxymethyl tolterodine (5-HMT), and tolterodine in bladder and other tissues of rats after their oral, intravenous, or intravesical administration. Muscarinic receptors in tissues were measured by using [N-methyl-H]scopolamine methyl chloride ([H]NMS). The in vitro binding affinity for muscarinic receptors was the highest by 5-HMT, followed by tolterodine and fesoterodine.

View Article and Find Full Text PDF

Imidafenacin is a potent and selective antagonist of M and M muscarinic receptors that is safe, efficacious, and well tolerated for controlling the symptoms of overactive bladder (OAB). However, the precise mechanisms responsible for the bladder-selective pharmacological effects of this agent remain unclear. The in vivo pharmacologic effects of imidafenacin result from receptor occupancy.

View Article and Find Full Text PDF

The present study aimed to directly characterize specific binding sites of tritium ([(3)H])-labeled imidafenacin, a new radioligand for labeling muscarinic receptors, in the bladder and other peripheral or central nervous tissues of rats. Muscarinic receptors in rat tissues were measured by radioligand binding assay using [(3)H]imidafenacin. Specific [(3)H]imidafenacin binding in rat tissues was saturable, reversible, and of high affinity.

View Article and Find Full Text PDF

The aim of the current study was to demonstrate highly specific and direct binding activity of tritium ([(3)H])-labeled imidafenacin for labeling muscarinic receptors in human bladder and parotid gland. Specific binding of [(3)H]imidafenacin in human tissues was saturable, reversible, and of high affinity. The Kd value for specific [(3)H]imidafenacin binding in the human bladder was approximately 3 times higher than that in the parotid gland.

View Article and Find Full Text PDF

Objective: To comparatively characterize the binding activity of fesoterodine, its active metabolite (5-hydroxymethyl tolterodine [5-HMT]), and tolterodine in the human bladder mucosa, detrusor muscle, and parotid gland.

Materials And Methods: Muscarinic receptors in the homogenates of human bladder mucosa, detrusor muscle, and parotid gland were measured by a radioligand binding assay using [N-methyl-(3)H] scopolamine methyl chloride.

Results: Fesoterodine, 5-HMT, and tolterodine competed with [N-methyl-(3)H] scopolamine methyl chloride for binding sites in the bladder mucosa, detrusor muscle, and parotid gland in a concentration-dependent manner.

View Article and Find Full Text PDF

The in vivo muscarinic receptor binding of antimuscarinic agents (oxybutynin, solifenacin, tolterodine, and imidafenacin) used to treat urinary dysfunction in patients with overactive bladder is reviewed. Transdermal administration of oxybutynin in rats leads to significant binding of muscarinic receptors in the bladder without long-term binding in the submaxillary gland and the abolishment of salivation evoked by oral oxybutynin. Oral solifenacin shows significant and long-lasting binding to muscarinic receptors in mouse tissues expressing the M(3) subtype.

View Article and Find Full Text PDF

Objectives: The current study aimed to characterize comparatively the binding of imidafenacin to muscarinic receptors in the human bladder mucosa and detrusor muscle and parotid gland.

Methods: The muscarinic receptor in homogenates of human tissues (bladder mucosa and detrusor muscle and parotid gland) was measured using a radioligand binding assay with [N-methyl-(3) H]scopolamine methyl chloride ([(3) H]NMS).

Results: Imidafenacin competed with [(3) H]NMS for binding sites in the bladder mucosa and detrusor muscle and parotid gland, and its affinity was significantly (2.

View Article and Find Full Text PDF