Objective: The study aimed to identify the predictors for readmission after a successful electroconvulsive therapy (ECT) course.
Methods: Medical charts of patients who received ECT for major depressive episodes were reviewed. Patients' demographic characteristics and treatment parameters, such as ECT charge, seizure duration, the number of ECT sessions and pharmacotherapy, were extracted.
A calculation method for a quadrature phase-shifting interferometer is presented, and its applications to specular and speckle interferometers and digital holography are described. Two sets of quadrature phase-shifted interferograms are acquired, and the calculation method proposed gives the phase distribution of the interferograms. The principle of the calculation method with error analysis and experimental results for specular and speckle interferometers and digital holography are also given.
View Article and Find Full Text PDFIn contrast to the wealth of biochemical and genetic information on vertebrate glucuronosyltransferases (UGATs), only limited information is available on the role and phylogenetics of plant UGATs. Here we report on the purification, characterization, and cDNA cloning of a novel UGAT involved in the biosynthesis of flower pigments in the red daisy (Bellis perennis). The purified enzyme, BpUGAT, was a soluble monomeric enzyme with a molecular mass of 54 kDa and catalyzed the regiospecific transfer of a glucuronosyl unit from UDP-glucuronate to the 2''-hydroxyl group of the 3-glucosyl moiety of cyanidin 3-O-6''-O-malonylglucoside with a kcat value of 34 s(-1) at pH 7.
View Article and Find Full Text PDFAnthocyanin acyltransferases (AATs) catalyze a regiospecific acyl transfer from acyl-CoA to the glycosyl moiety of anthocyanins, thus playing an important role in flower coloration. The known AATs are subfamily members of an acyltransferase family, the BAHD family, which play important roles in secondary metabolism in plants. Here, we describe the purification, characterization, and cDNA cloning of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers.
View Article and Find Full Text PDF