Publications by authors named "Shinya Hosaka"

Cynomolgus monkeys are used frequently in preclinical studies for new drug development due to their evolutionary closeness to humans. An antiretroviral drug, efavirenz, is a typical probe substrate for human cytochrome P450 (P450) 2B6, but is mainly metabolized by cynomolgus monkey P450 2C9. In this study, plasma concentrations of efavirenz were assessed in six cynomolgus monkeys genotyped for P450 2C9 c.

View Article and Find Full Text PDF

Cynomolgus monkeys are widely used in drug developmental stages as non-human primate models. Previous studies used 89 compounds to investigate species differences associated with cytochrome P450 (P450 or CYP) function that reported monkey specific CYP2C76 cleared 19 chemicals, and homologous CYP2C9 and CYP2C19 metabolized 17 and 30 human CYP2C9 and/or CYP2C19 substrates/inhibitors, respectively. In the present study, 22 compounds selected from viewpoints of global drug interaction guidances and guidelines were further evaluated to seek potential substrates for monkey CYP2C8, which is highly homologous to human CYP2C8 (92%).

View Article and Find Full Text PDF

Cynomolgus monkeys are used widely in preclinical studies as non-human primate species. The amino acid sequence of cynomolgus monkey cytochrome P450 (P450 or CYP) 2C19 is reportedly highly correlated to that of human CYP2C19 (92%) and CYP2C9 (93%). In the present study, 89 commercially available compounds were screened to find potential substrates for cynomolgus monkey CYP2C19.

View Article and Find Full Text PDF

Cynomolgus monkeys are widely used as primate models in preclinical studies, because of their evolutionary closeness to humans. In humans, the cytochrome P450 (P450) 2C enzymes are important drug-metabolizing enzymes and highly expressed in livers. The CYP2C enzymes, including CYP2C9, are also expressed abundantly in cynomolgus monkey liver and metabolize some endogenous and exogenous substances like testosterone, S-mephenytoin, and diclofenac.

View Article and Find Full Text PDF

Cytochromes P450 (P450) are important for not only drug metabolism and toxicity, but also biosynthesis and metabolism of cholesterol and bile acids, and steroid synthesis. In cynomolgus macaques, widely used in biomedical research, we have characterized P450 cDNAs, which were isolated as expressed sequence tags of cynomolgus macaque liver. In this study, cynomolgus CYP7A1, CYP17A1, CYP20A1, CYP27A1 and CYP51A1 cDNAs were characterized by sequence analysis, phylogenetic analysis and tissue expression pattern.

View Article and Find Full Text PDF

Cynomolgus monkeys are widely used in preclinical studies during drug development because of their evolutionary closeness to humans, including their cytochrome P450s (P450s). Most cynomolgus monkey P450s are almost identical (≥90%) to human P450s; however, CYP2C76 has low sequence identity (approximately 80%) to any human CYP2Cs. Although CYP2C76 has no ortholog in humans and is partly responsible for species differences in drug metabolism between cynomolgus monkeys and humans, a broad evaluation of potential substrates for CYP2C76 has not yet been conducted.

View Article and Find Full Text PDF

Onychomycosis is a common fungal nail disease that is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. Keratin affinity of topical drugs is an important physicochemical property impacting therapeutic efficacy. To be effective, topical drugs must penetrate the nail bed and retain their antifungal activity within the nail matrix, both of which are adversely affected by keratin binding.

View Article and Find Full Text PDF

Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes.

View Article and Find Full Text PDF

Cynomolgus monkey CYP2C76 does not have a corresponding ortholog in humans, and it is at least partly responsible for differences in drug metabolism between monkeys and humans. To determine if CYP2C76 is the only monkey-specific CYP gene, we identified cynomolgus monkey cDNAs for CYP2A23, CYP2A24, CYP2E1, CYP2J2, CYP3A5, CYP3A8, CYP4A11, CYP4F3, CYP4F11, CYP4F12, and CYP4F45. These CYP cDNAs showed a high sequence identity (93-96%) to the homologous human CYP cDNAs.

View Article and Find Full Text PDF