Publications by authors named "Shiny Amala Priya Rajan"

Polypharmacy-related drug-drug interactions (DDIs) are a significant and growing healthcare concern. An increasing number of therapeutic drugs on the market underscores the necessity to accurately assess new drug combinations during pre-clinical evaluation for DDIs. primary human hepatocytes (PHH) models are only applicable for short term induction studies due to their rapid loss of metabolic function.

View Article and Find Full Text PDF

Polypharmacy-related drug-drug interactions (DDIs) are a significant and growing healthcare concern. Increasing number of therapeutic drugs on the market underscores the necessity to accurately assess the new drug combinations during pre-clinical evaluation for DDIs. primary human hepatocyte (PHH)-only models are commonly used only for perpetrator DDI studies due to their rapid loss of metabolic function.

View Article and Find Full Text PDF

A crucial step in lead selection during drug development is accurate estimation and optimization of hepatic clearance using in vitro methods. However, current methods are limited by factors such as lack of physiological relevance, short culture/incubation times that are not consistent with drug exposure patterns in patients, use of drug absorbing materials, and evaporation during long-term incubation. To address these technological needs, we developed a novel milli-fluidic human liver tissue chip (LTC) that was designed with continuous media recirculation and optimized for hepatic cultures using human primary hepatocytes.

View Article and Find Full Text PDF

The liver metastasis accompanied with the loss of liver function is one of the most common complications in patients with triple-negative breast cancers (TNBC). Lineage reprogramming, as a technique direct inducing the functional cell types from one lineage to another lineage without passing through an intermediate pluripotent stage, is promising in changing cell fates and overcoming the limitations of primary cells. However, most reprogramming techniques are derived from human fibroblasts, and whether cancer cells can be reversed into hepatocytes remains elusive.

View Article and Find Full Text PDF

Generating microliver tissues to recapitulate hepatic function is of increasing importance in tissue engineering and drug screening. But the limited availability of primary hepatocytes and the marked loss of phenotype hinders their application. Human induced hepatocytes (hiHeps) generated by direct reprogramming can address the shortage of primary hepatocytes to make personalized drug prediction possible.

View Article and Find Full Text PDF

Current drug development techniques are expensive and inefficient, partially due to the use of preclinical models that do not accurately recapitulate in vivo drug efficacy and cytotoxicity. To address this challenge, we report on an integrated, in vitro multi-organoid system that enables parallel assessment of drug efficiency and toxicity on multiple 3D tissue organoids. Built in a low-cost, adhesive film-based microfluidic device, these miniaturized structures require less than 200 µL fluid volume and are amenable to both matrix-based 3D cell culture and spheroid aggregate integration, each supported with an in situ photocrosslinkable hyaluronic acid hydrogel.

View Article and Find Full Text PDF

A non-invasive method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm, which is a peak absorbance of hemoglobin. As the glucose concentration in blood decreases, its osmolarity also decreases and the Red Blood Cells (RBCs) swell and decrease the path length absorption coefficient.

View Article and Find Full Text PDF