To demonstrate key roles of multiple interactions between multiple components and multiple phases in the formation of an uncommon self-assembling pattern, we present here the construction of a porous hexagonal star (h-star) structure using a trigonal molecular building block at the liquid/solid interface. For this purpose, self-assembly of hexaalkoxy-substituted dehydrobenzo[12]annulene derivatives DBA-OCns was investigated at the tetradecane/graphite interface by means of scanning tunneling microscopy (STM). Monolayer structures were significantly influenced by coadsorbed tetradecane molecules depending on the alkyl chains length (C13-C16) of DBA-OCn.
View Article and Find Full Text PDFSupramolecular self-assembly of suitably functionalized building blocks on surfaces can serve as an excellent test-bed to gain understanding and control over multicomponent self-assembly in more complex matter. Here we employ a powerful combination of scanning tunnelling microscopy (STM) and molecular modeling to uncover two-dimensional (2D) crystallization and mixing behavior of a series of alkylated building blocks based on dehydrobenzo[12]annulene, forming arrays of nanowells. Thorough STM investigation employing high-resolution spatial imaging, use of specially designed marker molecules, statistical analysis and thermal stability measurements revealed rich and complex supramolecular chemistry, highlighting the impact of odd-even effects on the phase behavior.
View Article and Find Full Text PDF