Process Analytical Technology (PAT) has been gaining a lot of momentum in the biopharmaceutical community because of the potential for continuous real time quality assurance resulting in improved operational control and compliance. In previous publications, we have demonstrated feasibility of applications involving use of high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC) for real-time pooling of process chromatography column. In this article we follow a similar approach to perform lab studies and create a model for a chromatography step of a different modality (hydrophobic interaction chromatography).
View Article and Find Full Text PDFProcess analytical technology (PAT) has been gaining a lot of momentum in the biopharmaceutical community due to the potential for continuous real-time quality assurance resulting in improved operational control and compliance. Two of the key goals that have been outlined for PAT are "variability is managed by the process" and "product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions". Recently, we have been examining the feasibility of applying different analytical tools for designing PAT applications for bioprocessing.
View Article and Find Full Text PDFThe commercial production of recombinant human monoclonal antibody therapeutics demands robust processes. In this article we describe the development of a pH-conductivity hybrid gradient for a cation-exchange chromatography step to obtain high binding capacity and consistent purification resolution in scale process. Operational parameters and their ranges were characterized with DOE statistical method.
View Article and Find Full Text PDFProcess-scale antibody production requires polishing steps with extremely high product throughput and robust operation. In this communication, the Sartobind Q membrane adsorber for process-scale antibody production is evaluated as an alternative to Q column chromatography. Although the capacity seen with large-scale membrane adsorbers is competitive with column chromatography, the same throughput is not achieved with the current scale-down models.
View Article and Find Full Text PDF