Phytochrome and cyanobacteriochrome utilize a linear methine-bridged tetrapyrrole (bilin) to control numerous biological processes. They show a reversible photoconversion between two spectrally distinct states. This photocycle is initiated by a C═C double-bond photoisomerization of the bilin followed by its thermal relaxations with transient and/or stationary changes in the protonation state of the pyrrole moiety.
View Article and Find Full Text PDFThree kinds of photochemical reactions are known in flavins as chromophores of photosensor proteins, reflecting the various catalytic reactions of the flavin in flavoenzymes. Sensor of blue light using the flavin FAD (BLUF) domains exhibit a unique photoreaction compared with other flavin-binding photoreceptors in that the chromophore does not change its chemical structure between unphotolyzed and intermediate states. Rather, the hydrogen bonding environment is altered, whereby the conserved Gln and Tyr residues near FAD play a crucial role.
View Article and Find Full Text PDFA soluble cytochrome (Cyt) c' from thermophilic purple sulfur photosynthetic bacterium Thermochromatium (Tch.) tepidum exhibits marked thermal tolerance compared with that from the closely related mesophilic counterpart Allochromatium vinosum. Here, we focused on the difference in the C-terminal region of the two Cyts c' and examined the effects of D131 and R129 mutations on the thermal stability and local heme environment of Cyt c' by differential scanning calorimetry (DSC) and resonance Raman (RR) spectroscopy.
View Article and Find Full Text PDF