The obstacles to the development of therapeutic aptamers for systemic inflammatory diseases, such as nuclease degradation and renal clearance, have not been fully overcome. Here, we report a novel PEGylation method, sbC-PEGylation, which improves the pharmacokinetic properties of RNA aptamers that act against interleukin-17A (IL-17A) in mice and monkeys. sbC-PEGylated aptamers were synthesized by coupling the symmetrical branching molecule 2-cyanoethyl-N,N-diisopropyl phosphoroamidite to the 5' end of the aptamer, before conjugating two polyethylene glycol (PEG) molecules to the aptamer.
View Article and Find Full Text PDFThe functional relationships between phosphoinositides and sphingolipids have not been well characterized to date. ISP-1/myriocin is a potent inhibitor of sphingolipid biosynthesis and induces severe growth defects in eukaryotic cells because of the sphingolipid deprivation. We characterized a novel multicopy suppressor gene of ISP-1-mediated cell death in yeast, MSS4.
View Article and Find Full Text PDF