Publications by authors named "Shinozuka H"

Objectives: The underlying mechanism of masseter muscle pain hypersensitivity by sustained masseter muscle contraction (SMMC) is not well understood. This study aimed to examine whether the activation of satellite glial cells in the trigeminal ganglion (TG) contributes to masseter muscle pain hypersensitivity induced by SMMC.

Methods: Electrodes were placed on the masseter muscle fascia of rats to induce strong contractions, by daily electrical stimulation.

View Article and Find Full Text PDF

Recent studies have revealed presence of fungus-originated genes in genomes of cool-season grasses, suggesting occurrence of multiple ancestral gene transfer events between the two distant lineages. The current article describes identification of glucanase-like and monooxygenase-like genes from creeping bent grass, as lateral gene transfer candidates. An in silico analysis suggested presence of the glucanase-like gene in Agrostis, Deyeuxia, and Polypogon genera, but not in other species belonging to the clade 1 of the Poeae tribe.

View Article and Find Full Text PDF

Molecular characterization of genetically modified plants can provide crucial information for the development of detection and identification methods, to comply with traceability, and labeling requirements prior to commercialization. Detailed description of the genetic modification was previously a challenging step in the safety assessment, since it required the use of laborious and time-consuming techniques. In this study an accurate, simple, and fast method was developed for molecular characterization of genetically modified (GM) plants, following a user-friendly workflow for researchers with limited bioinformatic capabilities.

View Article and Find Full Text PDF

Evidence for ancestral gene transfer between Epichloë fungal endophyte ancestors and their host grass species is described. From genomes of cool-season grasses (the Poeae tribe), two Epichloë-originated genes were identified through DNA sequence similarity analysis. The two genes showed 96% and 85% DNA sequence identities between the corresponding Epichloë genes.

View Article and Find Full Text PDF

Food security is one of major concerns for the growing global population. Modern agricultural biotechnologies, such as genetic modification, are a possible solution through enabling an increase of production, more efficient use of natural resources, and reduced environmental impacts. However, new crop varieties with altered genetic materials may be subjected to safety assessments to fulfil the regulatory requirements, prior to marketing.

View Article and Find Full Text PDF

Implementation of molecular biotechnology, such as transgenic technologies, in forage species can improve agricultural profitability through achievement of higher productivity, better use of resources such as soil nutrients, water, or light, and reduced environmental impact. Development of detection and quantification techniques for genetically modified plants are necessary to comply with traceability and labeling requirements prior to regulatory approval for release. Real-time PCR has been the standard method used for detection and quantification of genetically modified events, and droplet digital PCR is a recent alternative technology that offers a higher accuracy.

View Article and Find Full Text PDF

The current Illumina HiSeq and MiSeq platforms can generate paired-end reads of up to 2 x 250 bp and 2 x 300 bp in length, respectively. These read lengths may be substantially longer than genomic regions of interest when a DNA sequencing library is prepared through a target enrichment-based approach. A sequencing library preparation method has been developed based on the homology-based enzymatic DNA fragment assembly scheme to allow processing of multiple PCR products within a single read.

View Article and Find Full Text PDF

The application of genomics in crops has the ability to significantly improve genetic gain for agriculture. Many marker-dense tools have been developed, but few have seen broad adoption in plant genomics due to issues of significant variations of genome size, levels of ploidy, single nucleotide polymorphism (SNP) frequency and reproductive habit. When combined with limited breeding activities, small research communities and scant sequence resources, the suitability of popular systems is often suboptimal and routinely fails to effectively balance cost-effectiveness and sample throughput.

View Article and Find Full Text PDF

RNA-Seq methodology has been used to generate a comprehensive transcriptome sequence resource for perennial ryegrass, an important temperate pasture grass species. A total of 931 547 255 reads were obtained from libraries corresponding to 19 distinct tissue samples, including both vegetative and reproductive stages of development. Assembly of data generated a final filtered reference set of 48 713 contigs and scaffolds.

View Article and Find Full Text PDF

Molecular characterisation has convincingly demonstrated some types of horizontal gene transfer in eukaryotes, but nuclear gene transfer between distantly related eukaryotic groups appears to have been rare. For angiosperms (flowering plants), nuclear gene transfer events identified to date have been confined to genes originating from prokaryotes or other plant species. In this report, evidence for ancient horizontal transfer of a fungal nuclear gene, encoding a ß-1,6-glucanase enzyme for fungal cell wall degradation, into an angiosperm lineage is presented for the first time.

View Article and Find Full Text PDF

Background. Multiplexed sequencing is commonly performed on massively parallel short-read sequencing platforms such as Illumina, and the efficiency of library normalisation can affect the quality of the output dataset. Although several library normalisation approaches have been established, none are ideal for highly multiplexed sequencing due to issues of cost and/or processing time.

View Article and Find Full Text PDF

Relatively modest levels of genetic gain have been achieved in conventional ryegrass breeding when compared to cereal crops such as maize, current estimates indicating an annual improvement of 0.25-0.6% in dry matter production.

View Article and Find Full Text PDF

Background: Fragmentation at random nucleotide locations is an essential process for preparation of DNA libraries to be used on massively parallel short-read DNA sequencing platforms. Although instruments for physical shearing, such as the Covaris S2 focused-ultrasonicator system, and products for enzymatic shearing, such as the Nextera technology and NEBNext dsDNA Fragmentase kit, are commercially available, a simple and inexpensive method is desirable for high-throughput sequencing library preparation. MspJI is a recently characterised restriction enzyme which recognises the sequence motif CNNR (where R = G or A) when the first base is modified to 5-methylcytosine or 5-hydroxymethylcytosine.

View Article and Find Full Text PDF

In plant species, control of flowering time is an important factor for adaptation to local natural environments. The Vrn1 , CO , FT1 and CK2α genes are key components in the flowering-specific signaling pathway of grass species. Meadow fescue is an agronomically important forage grass species, which is naturally distributed across Europe and Western Asia.

View Article and Find Full Text PDF

Background: In crop species, QTL analysis is commonly used for identification of factors contributing to variation of agronomically important traits. As an important pasture species, a large number of QTLs have been reported for perennial ryegrass based on analysis of biparental mapping populations. Further characterisation of those QTLs is, however, essential for utilisation in varietal improvement programs.

View Article and Find Full Text PDF

Perennial ryegrass is an important pasture grass in temperate regions. As a forage biomass-generating species, plant architecture-related characters provide key objectives for breeding improvement. In silico comparative genomics analysis predicted colocation between a previously identified QTL for plant type (erect versus prostrate growth) and the ortholocus of the rice OsABCG5 gene (LpABCG5), as well as related QTLs in other Poaceae species.

View Article and Find Full Text PDF

Perennial ryegrass is an obligate outbreeding pasture grass of the Poaceae family, with a two-locus (S and Z) gametophytic self-incompatibility (SI) mechanism. This system has provided a major obstacle to targeted varietal development, and enhanced knowledge is expected to support more efficient breeding strategies. Comparative genetics and physical mapping approaches have been developed to permit molecular cloning of the SI genes.

View Article and Find Full Text PDF

A perennial ryegrass cDNA clone encoding a putative glycine-rich RNA binding protein (LpGRP1) was isolated from a cDNA library constructed from crown tissues of cold-treated plants. The deduced polypeptide sequence consists of 107 amino acids with a single N-terminal RNA recognition motif (RRM) and a single C-terminal glycine-rich domain. The sequence showed extensive homology to glycine-rich RNA binding proteins previously identified in other plant species.

View Article and Find Full Text PDF

The alpha-subunit of the casein protein kinase CK2 has been implicated in both light-regulated and circadian rhythm-controlled plant gene expression, including control of the flowering time. Two putative CK2alpha genes of perennial ryegrass (Lolium perenne L.) have been obtained from a cDNA library constructed with mRNA isolated from cold-acclimated crown tissue.

View Article and Find Full Text PDF

Background: Mechanisms underlying prevention by beta-naphthoflavone (beta-NF) of mammary carcinogenesis initiated with 7,12-dimethylbenz[a]anthracene (DMBA) in the rat were elucidated.

Methods And Results: Treatment of female Sprague-Dawley rats with beta-NF at 40 mg/kg b.wt.

View Article and Find Full Text PDF

Previous work has shown that treatment with thyroid hormone (T3) decreased the incidence of rat hepatocellular carcinoma (HCC). The present study was designed to determine whether the inhibitory effect of T3 on HCC development was limited to early steps of the carcinogenetic process or, whether a similar effect could also be exerted by starting T3 treatment at later stages. Hepatic nodules were induced in Fischer rats by a single dose of DENA, followed by a 2-week exposure of the animals to 2-AAF and partial hepatectomy.

View Article and Find Full Text PDF

The thyroid hormone (T3) affects cell growth, differentiation, and regulates metabolic functions via its interaction with the thyroid hormone nuclear receptors (TRs). The mechanism by which TRs mediate cell growth is unknown. To investigate the mechanisms responsible for the mitogenic effect of T3, we have determined changes in activation of transcription factors, mRNA levels of immediate early genes, and levels of proteins involved in the progression from G1 to S phase of the cell cycle.

View Article and Find Full Text PDF

Studies on hepatocyte primary cultures have suggested that loss of expression of the placental form of glutathione S-transferase in peroxisome proliferator (PP)-induced hepatocarcinogenesis is due to inhibition of glutathione S-transferase P (GSTP) transcription by the PPs. In the present study, we have analyzed the effect of a PP, ciprofibrate, and of another ligand of nuclear receptors, 3,3', 5-triiodo-L-thyronine (T3), on GSTP mRNA and protein levels in an in vivo model where GSTP expression was induced in Wistar rats by pre-treatment with a single dose of lead nitrate. Results indicate that administration of ciprofibrate or T3, immediately after lead nitrate treatment, did not exert any inhibitory effect on GSTP mRNA and protein levels, as revealed by both Western and immunohistochemical analysis.

View Article and Find Full Text PDF

Previous studies have demonstrated that short-term treatment with peroxisome proliferators decreased the size and number of gamma-glutamyl transpeptidase or placental glutathione S-transferase (GSTP)-positive hepatic hyperplastic lesions. In this study, we have examined the effect of the hormone triiodothyronine (T3), which, similarly to peroxisome proliferators, is a strong liver mitogen and a ligand of nuclear receptors, on the growth of GSTP-positive nodules generated by the resistant hepatocyte model and on the development of hepatocellular carcinoma. Hepatic hyperplastic nodules were induced in male Fischer rats by a single dose (150 mg/kg) of diethylnitrosamine, followed by a 2-week exposure of the animals to 2-acetylaminofluorene and partial hepatectomy.

View Article and Find Full Text PDF

We have previously demonstrated that hepatocyte proliferation induced by the mitogen 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) is independent of changes in cytokines, immediate early genes, and transcription factors that are considered to be necessary for regeneration of the liver after partial hepatectomy (PH) or necrosis. To further investigate the differences between mitogen-induced mouse hepatocyte proliferation and liver regeneration after PH, we have measured the expression of cyclin D1, cyclin D3, cyclin E, and cyclin A and of the cyclin-dependent kinases CDK2, CDK4, and CDK6. The involvement of the cyclin-dependent kinase inhibitors p21 and p27 and of the oncosuppressor gene p53 was also examined at different times after stimulation of hepatocyte proliferation.

View Article and Find Full Text PDF